Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Recursive track-before-detect with target amplitude fluctuations

Recursive track-before-detect with target amplitude fluctuations

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A particle-based track-before-detect filtering algorithm is presented. This algorithm incorporates the Swerling family of target amplitude fluctuation models in order to capture the effect of radar cross-section changes that a target would present to a sensor over time. The filter is designed with an existence variable, to determine the presence of a target in the data, and an efficient method of incorporating this variable in a particle filter scheme is developed. Results of the algorithm on simulated data show a significant gain in detection performance through accurately modelling the target amplitude fluctuations.

References

    1. 1)
      • W.R. Gilks , C. Berzuini . Following a moving target – Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B , 1 , 127 - 146
    2. 2)
    3. 3)
    4. 4)
      • Driessen, H., Boers, Y.: `An efficient particle filter for nonlinear jump Markov systems', Proc. IEE Seminar on Target Tracking: Algorithms and Applications, Mar. 2004, Sussex,, UK.
    5. 5)
      • M.G. Rutten , N.J. Gordon , S. Maskell . Particle-based track-before-detect in Rayleigh noise. Proc. SPIE–Int. Soc. Opt. Eng. , 509 - 519
    6. 6)
      • S.B. Colegrove , A.W. Davis , J.K. Ayliffe . Track initiation and nearest neighbours incorporated into probabilistic data association. J. Electr. Electron. Eng., Aust. , 3 , 191 - 198
    7. 7)
      • Rollason, M., Salmond, D.: `A particle filter for track-before-detect of a target with unknown amplitude', IEE Int. Seminar on Target Tracking: Algorithms and Applications, Oct. 2001, Enschede, Netherlands, p. 14/1–4.
    8. 8)
      • F.J. Harris . On the use of windows for harmonic analysis with the discrete Fouriertransform. Proc. IEEE , 1 , 51 - 83
    9. 9)
    10. 10)
      • Boers, Y., Driessen, J.N.: `Particle filter based detection for tracking', Proc. American Control Conference, June 2001, Arlington, VA, USA, p. 4393–4397.
    11. 11)
      • Boers, Y., Driessen, H.: `A particle filter multi target track before detect application: some special aspects', Fusion 2004: Proc. 7th Int. Conf. on Information Fusion, June 2004, Stockholm, Sweden.
    12. 12)
      • Salmond, D.J., Birch, H.: `A particle filter for track-before-detect', Proc. American Control Conference, June 2001, Arlington, VA, USA, p. 3755–3760.
    13. 13)
      • Boers, Y., Driessen, J.N., Verschure, F., Heemels, W.P.M.H., Juloski, A.: `A multi target track before detect application', CVPR 2003: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2003, Madison, WI, USA.
    14. 14)
      • N. Gordon , D. Salmond , A. Smith . Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, Radar Signal Process. , 2 , 107 - 113
    15. 15)
      • D. Mušicki , R. Evans , S. Stankovic . Integrated probabilistic data association. IEEE Trans. Autom. Control , 6 , 1237 - 1240
    16. 16)
      • Rutten, M.G., Gordon, N.J., Maskell, S.: `Efficient particle-based track-before-detect in Rayleigh noise', Fusion 2004: Proc. 7th Int. Conf. on Information Fusion, June 2004, Stockholm, Sweden, p. 693–700.
    17. 17)
      • B. Ristic , S. Arulampalam , N. Gordon . (2004) Beyond the Kalman filter: particle filters for tracking applications.
    18. 18)
      • B. Ristic . (2004) Detection and tracking of stealthy targets, Beyond the Kalman filter: particle filters for tracking applications.
    19. 19)
      • P. Swerling . Probability of detection for fluctuating targets. IEEE Trans. Inf. Theory , 2 , 269 - 308
    20. 20)
    21. 21)
      • Andrieu, C., de Freitas, N., Doucet, A.: `Sequential MCMC for Bayesian model selection', Proc. IEEE Signal Processing Workshop on Higher-Order Statistics, June 1999>, Caesarea, Israel, p. 130–134.
    22. 22)
      • M.I. Skolnik . (2001) Introduction to radar systems.
    23. 23)
      • Y. Barniv . Dynamic programming solution for detecting dim moving targets. IEEE Trans. Aerosp. Electron. Syst. , 144 - 156
    24. 24)
    25. 25)
      • C. Berzuini , W. Gilks . (2001) RESAMPLE-MOVE filtering with cross-model jumps, Sequential Monte Carlo methods in practice.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-rsn_20045041
Loading

Related content

content/journals/10.1049/ip-rsn_20045041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address