Recursive track-before-detect with target amplitude fluctuations
Recursive track-before-detect with target amplitude fluctuations
- Author(s): M.G. Rutten ; N.J. Gordon ; S. Maskell
- DOI: 10.1049/ip-rsn:20045041
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): M.G. Rutten 1 ; N.J. Gordon 1 ; S. Maskell 2
-
-
View affiliations
-
Affiliations:
1: Tracking and Sensor Fusion, Intelligence, Surveillance and Reconnaissance Division, Defence Science and Technology Organisation, Edinburgh, Australia
2: Malvern Technology Centre, QinetiQ Ltd., Malvern, UK
-
Affiliations:
1: Tracking and Sensor Fusion, Intelligence, Surveillance and Reconnaissance Division, Defence Science and Technology Organisation, Edinburgh, Australia
- Source:
Volume 152, Issue 5,
October 2005,
p.
345 – 352
DOI: 10.1049/ip-rsn:20045041 , Print ISSN 1350-2395, Online ISSN 1359-7086
A particle-based track-before-detect filtering algorithm is presented. This algorithm incorporates the Swerling family of target amplitude fluctuation models in order to capture the effect of radar cross-section changes that a target would present to a sensor over time. The filter is designed with an existence variable, to determine the presence of a target in the data, and an efficient method of incorporating this variable in a particle filter scheme is developed. Results of the algorithm on simulated data show a significant gain in detection performance through accurately modelling the target amplitude fluctuations.
Inspec keywords: radar tracking; tracking filters; radar cross-sections
Other keywords: radar cross-section changes; target amplitude fluctuations; recursive track-before-detect; particle-based track-before-detect filtering algorithm; Swerling family
Subjects: Filtering methods in signal processing; Radar theory
References
-
-
1)
- W.R. Gilks , C. Berzuini . Following a moving target – Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B , 1 , 127 - 146
-
2)
- M.S. Arulampalam , S. Maskell , N. Gordon , T. Clapp . A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. , 2 , 174 - 188
-
3)
- S.M. Tonissen , Y. Bar-Shalom . Maximum likelihood track-before-detect with fluctuating target amplitude. IEEE Trans. Aerosp. Electron. Syst. , 3 , 796 - 809
-
4)
- Driessen, H., Boers, Y.: `An efficient particle filter for nonlinear jump Markov systems', Proc. IEE Seminar on Target Tracking: Algorithms and Applications, Mar. 2004, Sussex,, UK.
-
5)
- M.G. Rutten , N.J. Gordon , S. Maskell . Particle-based track-before-detect in Rayleigh noise. Proc. SPIE–Int. Soc. Opt. Eng. , 509 - 519
-
6)
- S.B. Colegrove , A.W. Davis , J.K. Ayliffe . Track initiation and nearest neighbours incorporated into probabilistic data association. J. Electr. Electron. Eng., Aust. , 3 , 191 - 198
-
7)
- Rollason, M., Salmond, D.: `A particle filter for track-before-detect of a target with unknown amplitude', IEE Int. Seminar on Target Tracking: Algorithms and Applications, Oct. 2001, Enschede, Netherlands, p. 14/1–4.
-
8)
- F.J. Harris . On the use of windows for harmonic analysis with the discrete Fouriertransform. Proc. IEEE , 1 , 51 - 83
-
9)
- S.C. Pohlig . An algorithm for detection of moving optical targets. IEEE Trans. Aerosp. Electron. Syst. , 1 , 56 - 63
-
10)
- Boers, Y., Driessen, J.N.: `Particle filter based detection for tracking', Proc. American Control Conference, June 2001, Arlington, VA, USA, p. 4393–4397.
-
11)
- Boers, Y., Driessen, H.: `A particle filter multi target track before detect application: some special aspects', Fusion 2004: Proc. 7th Int. Conf. on Information Fusion, June 2004, Stockholm, Sweden.
-
12)
- Salmond, D.J., Birch, H.: `A particle filter for track-before-detect', Proc. American Control Conference, June 2001, Arlington, VA, USA, p. 3755–3760.
-
13)
- Boers, Y., Driessen, J.N., Verschure, F., Heemels, W.P.M.H., Juloski, A.: `A multi target track before detect application', CVPR 2003: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2003, Madison, WI, USA.
-
14)
- N. Gordon , D. Salmond , A. Smith . Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, Radar Signal Process. , 2 , 107 - 113
-
15)
- D. Mušicki , R. Evans , S. Stankovic . Integrated probabilistic data association. IEEE Trans. Autom. Control , 6 , 1237 - 1240
-
16)
- Rutten, M.G., Gordon, N.J., Maskell, S.: `Efficient particle-based track-before-detect in Rayleigh noise', Fusion 2004: Proc. 7th Int. Conf. on Information Fusion, June 2004, Stockholm, Sweden, p. 693–700.
-
17)
- B. Ristic , S. Arulampalam , N. Gordon . (2004) Beyond the Kalman filter: particle filters for tracking applications.
-
18)
- B. Ristic . (2004) Detection and tracking of stealthy targets, Beyond the Kalman filter: particle filters for tracking applications.
-
19)
- P. Swerling . Probability of detection for fluctuating targets. IEEE Trans. Inf. Theory , 2 , 269 - 308
-
20)
- B. Carlson , E. Evans , S. Wilson . Search radar detection and track with the though transform, part I: system concept. IEEE Trans. Aerosp. Electron. Syst. , 1 , 102 - 108
-
21)
- Andrieu, C., de Freitas, N., Doucet, A.: `Sequential MCMC for Bayesian model selection', Proc. IEEE Signal Processing Workshop on Higher-Order Statistics, June 1999>, Caesarea, Israel, p. 130–134.
-
22)
- M.I. Skolnik . (2001) Introduction to radar systems.
-
23)
- Y. Barniv . Dynamic programming solution for detecting dim moving targets. IEEE Trans. Aerosp. Electron. Syst. , 144 - 156
-
24)
- P. Swerling . Radar probability of detection for some additional fluctuating target cases. IEEE Trans. Aerosp. Electron. Syst. , 698 - 709
-
25)
- C. Berzuini , W. Gilks . (2001) RESAMPLE-MOVE filtering with cross-model jumps, Sequential Monte Carlo methods in practice.
-
26)
- Y. Boers , H. Driessen . A particle-filter-based detection scheme. IEEE Signal Process. Lett. , 10 , 300 - 302
-
1)

Related content
