http://iet.metastore.ingenta.com
1887

Analysis of multistatic configurations for spaceborne SAR interferometry

Analysis of multistatic configurations for spaceborne SAR interferometry

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spaceborne bistatic and multistatic SAR configurations are an attractive approach to acquire along-track and cross-track interferograms on a global scale. An efficient realisation of such systems may be achieved by a set of low-cost, passive receivers onboard a constellation of microsatellites which simultaneously record the backscattered signals transmitted by a conventional spaceborne radar. The authors introduce several multistatic SAR configurations suitable for global single-pass interferometry and discuss their advantages and limitations. The achievable interferometric performance is analysed in detail, taking into account thermal noise, block adaptive quantisation, range and azimuth ambiguities, and geometric decorrelation for both surface and random volume scatterers. Based on the estimated interferometric phase errors, the relative height accuracies for three illuminators (PALSAR, ASAR, TerraSAR-X) are derived. The achievable height accuracies are of the order of 2 m for PALSAR and ASAR, and of the order of 1 m for TerraSAR-X. However, it turns out that for vegetated areas, volume decorrelation may become a limiting factor for configurations with large interferometric baselines. These restrictions can be overcome by making the interferometric configuration fully polarimetric and/or increasing the number of available baselines.

References

    1. 1)
      • R. Gens , J.L. Van Genderen . SAR interferometry - issues, techniques, applications. Int. J. Remote Sens. , 10 , 1803 - 1835
    2. 2)
      • R. Bamler , P. Hartl . Synthetic aperture radar interferometry. Inverse Prob. , R1 - R54
    3. 3)
      • S.N. Madsen , H.A. Zebker , R. Reyerson . (1998) Imaging radar interferometry, Manual of remote sensing.
    4. 4)
    5. 5)
      • Massonnet, D.: `Roue interférométrique', French, 236910D17306RS, 30 April 1998.
    6. 6)
    7. 7)
      • Moreira, A., Krieger, G., Mittermayer, J.: `Comparison of several bistatic SAR configurations for spaceborne SAR interferometry', Proceedings of IGARSS'01, 2001, see also Proceedings of the ASAR Workshop, Saint-Hubert, Quebec, 2001.
    8. 8)
      • Fiedler, H., Krieger, G., Jochim, F., Kirschner, M., Moreira, A.: `Analysis of bistatic configurations for spaceborne SAR interferometry', Proceedings of EUSAR'02, 2002, Cologne, Germany, p. 29–32.
    9. 9)
      • Krieger, G., Wendler, M., Fiedler, H., Mittermayr, J., Moreira, A.: `Comparison of the interferometric performance for spaceborne parasitic SAR configurations', Proceedings of EUSAR'02, 2002, Cologne, Germany, p. 467–470.
    10. 10)
    11. 11)
      • Das, A., Cobb, R.: `TechSat 21 space missions using collaborating constellations of satellites', Presented at AFRL, Space Based Radar Workshop, 1998, Atlanta, GA.
    12. 12)
      • A. Moccia , N. Chiacchio , A. Capone . Spaceborne bistatic synthetic aperture radar for remote sensing applications. Int. J. Remote Sens. , 18 , 3395 - 3414
    13. 13)
      • Evans, N.B., Lee, P., Girard, R.: `The Radarsat-2&3 topographic mission', Proceedings of EUSAR'02, 2002, Cologne, Germany, p. 37–39.
    14. 14)
      • Suchail, J.-L., Buck, C., Guijarro, J., Schönenberg, A., Torres, R.: `The ENVISAT ASAR instrument', Proceedings of EUSAR'00, 2000, Munich, Germany, p. 33–37.
    15. 15)
      • H. Kimura , N. Itoh . ALOS PALSAR: The Japanese second-generation spaceborne SAR and its application. Proc. SPIE-Int. Soc. Opt. Eng. , 110 - 119
    16. 16)
      • Suess, M., Riegger, S., Pitz, W., Werninghaus, R.: `TerraSAR-X design and performance', Proceedings of EUSAR'02, 2002, Cologne, Germany, p. 49–52.
    17. 17)
      • G.W. Hill . Researches in the lunar theory. Am. J. Math. , 1 , 5 - 26
    18. 18)
      • W. Clohessy , R. Wiltshire . Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. , 9 , 653 - 658
    19. 19)
      • J.E. Prussing , B.A. Conway . (1993) Orbital mechanics.
    20. 20)
      • Mittermayer, J., Krieger, G., Wendler, M., Moreira, A.: `Preliminary interferometric performance estimation for the interferometric cartwheel in combination with ENVISAT ASAR', Presented at CEOS Workshop, 2–5 April 2001, Tokyo, Japan.
    21. 21)
      • Romeiser, R., Schwäbisch, M., Schulz-Stellenfleth, J., Thompson, D.R., Siegmund, R., Niedermeier, A., Alpers, W., Lehner, S.: `Study on concepts for radar interferometry from satellites for ocean (and land) applications', April 2002.
    22. 22)
      • R. Romeiser , D.R. Thompson . Numerical study in the along-track interferometric radar imaging mechanism of oceanic surface currents. IEEE Trans. Geosci. Remote Sens. , 2 , 446 - 458
    23. 23)
      • J. Curlander , R. McDonough . (1991) Synthetic aperture radar.
    24. 24)
      • N.J. Willis . (1991) Bistatic radar.
    25. 25)
      • F.T. Ulaby , M.C. Dobson . (1989) Handbook of radar scattering statistics for terrain.
    26. 26)
    27. 27)
      • J. Max . Quantization for minimum distortion. IEEE Trans. Inf. Theory , 7 - 12
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • E. Rodriguez , J.M. Martin . Theory and design of interferometric synthetic aperture radars. IEE Proc. F, Radar Signal Process. , 2 , 147 - 159
    33. 33)
      • D. Just , R. Bamler . Phase statistics of interferograms with applications to synthetic aperture radar. Appl. Opt. , 20 , 4361 - 4368
    34. 34)
    35. 35)
    36. 36)
      • A. Freeman , S.L. Durden . A three component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. , 963 - 973
    37. 37)
    38. 38)
      • N. Abramowitz , I. Stegun . (1965) Handbook of mathematical functions.
    39. 39)
    40. 40)
      • Cloude, S.R., Papathanassiou, K.P.: `A 3-stage inversion process for polarimetric SAR interferometry', Proceedings of EUSAR'02, 4–6 June 2002, Cologne, Germany, p. 279–282.
    41. 41)
    42. 42)
      • Seymour, M.S., Cumming, I.G.: `Maximum likelihood estimation for SAR interferometry', Proceedings of IEEE-IGARSS'94, 1994, Pasadena, USA.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-rsn_20030441
Loading

Related content

content/journals/10.1049/ip-rsn_20030441
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address