http://iet.metastore.ingenta.com
1887

Sea-wave fractal spectrum for SAR remote sensing

Sea-wave fractal spectrum for SAR remote sensing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new model of the sea-wave directional spectrum based on fractals is proposed. An innovative aspect of the work is the theoretical approach used to get the `fractal sea spectrum'. The common spectrum models are described by empirical expressions derived from fitting experimental data. Starting from a definition of a fractal model of the sea surface, the spatial autocorrelation function is calculated and the directional sea spectrum derived by taking its two-dimensional Fourier transform. The fractal spectrum explicitly accounts for the fractality of the sea. The spectrum theoretically explains why its slope in the equilibrium range depends on the fractal dimension D of the sea surface and can be expressed by the relationship 2D−7, as usually claimed from experimental data. The spectrum is validated by comparing it to the common spectra of Pierson–Moskowitz and JONSWAP and to real data of the Mediterranean sea. New research directions offered by this spectrum model in SAR remote sensing are addressed.

References

    1. 1)
      • J.R. APEL . (1988) , Principles of ocean physics.
    2. 2)
      • J. PIERSON , L. MOSKOWITZ . A proposed spectral form for fully developed wind seas based on similarity theory of S.A. Kitaigorodoskii. J. Geophys. Res. , 24 , 5181 - 5202
    3. 3)
      • HASSELMANN, K.: `Measurement of wind-wave growth and swell decay during the joint north sea wave project JONSWAP', Technical report, 1973.
    4. 4)
      • J.R. APEL . An improved model of the ocean surface wave vector spectrum and its effects on radar backscatterer. J. Geophys. Res. , 16 , 269 - 16, 291–16
    5. 5)
      • T. ELFOUHAILY , B. CHAPRON , K. KATSAROS , D. VANDEMARK . A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. , 15 , 781 - 15, 796–15
    6. 6)
      • B. Mandelbrot . (1983) , The fractal geometry of nature.
    7. 7)
      • M.F. BARNSLEY . (1988) , Fractal everywhere.
    8. 8)
      • Lo . Fractal characterisation of sea-scattered signals and detection of sea-surfacetargets. IEE Proc. F , 4 , 243 - 250
    9. 9)
      • D.L. JAGGARD , X. SUN . Scattering from fractally corrugated surfaces. J. Opt. Soc. Am. A , 6 , 1131 - 1139
    10. 10)
      • G. FRANCESCHETTI , M. MIGLIACCIO , D. RICCIO . An electromagnetic fractal-based model for the study of fading. Radio Sci. , 6 , 1749 - 1759
    11. 11)
      • J. CHEN , K.Y. LO , H. LEUNG , J. LITVA . The use of fractals for modeling EM waves scattering from rough sea surface. IEEE Trans. Geosci. Remote Sens. , 4 , 966 - 972
    12. 12)
      • F. BERIZZI , E. DALLE MESE , G. PINELLI . One-dimensional fractal model of sea surface. IEE Proc., Radar, Sonar Navig. , 1 , 55 - 64
    13. 13)
      • F.T. ULABY , R.K. MORRISON , A.K. FUNG . (1990) , Microwave remote sensing: Active and passive.
    14. 14)
      • A.I. MORRISON , M.A. SROKOZ . Estimating the fractal dimension of the sea surface: first attempt. Ann. Geophys. , 648 - 658
    15. 15)
      • R.E. GALZMAN , S.H. PILORZ . Effect of sea maturity on satellite altimeter measurements. J. Geophys. Res. , 15 , 2857 - 2870
    16. 16)
      • BERIZZI, F., DALLE MESE, E., MARTORELLA, M.: `A fractal theoretical approach for sea wave spectrum evaluation', Technical report FCTL7, 24 January 2000.
    17. 17)
      • F.J. OCAMPO-TORRES . Wind directional effects on the hydrodynamic modulation of microwave radar images of ocean wave. Int. J. Remote Sens. , 8 , 1339 - 1355
    18. 18)
      • O.M. PHILLIPS . The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech. , 426 - 434
    19. 19)
      • R.E. GLAZMAN , P.B. WEICHMAN . Statistical geometry of a small surface path in a developed sea. J. Geophys. Res. , 4998 - 5010
    20. 20)
      • H. MITSUYASU , F. TASAI , T. SUHARA , S. MIZUNO , M. OHKUSU , T. HONDA , K. RIKHSHI . Observations of the directional spectrum of ocean wave using a cloverleaf buoy. J. Phys. Oceanog , 750 - 759
    21. 21)
      • G. CAUDAL , D. HAUSER . Directional spreading function of the sea wave spectrum at short scale, inferred from multifrequency radar observations. J. Geophys. Res. , 101 , 16601 - 16613
    22. 22)
      • BERIZZI, F., GAMBA, P., GARZELLI, A., MONORCHIO, A.: `Fractal analysis and validation of a sea-surface fractal model for SAR imagery', Proceedings of European symposium on Remote sensing, September 1999, Firenze, Italy, p. 612–621.
    23. 23)
      • K. HASSELMANN , S. HASSELMANN . On the nonlinear of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res. , 10,713 - 10,729
    24. 24)
      • I.S. GRADSHTEYN , I.M. RYZHIK . , Table of integrals series and products.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-rsn_20010299
Loading

Related content

content/journals/10.1049/ip-rsn_20010299
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address