Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Improved particle filter for nonlinear problems

Improved particle filter for nonlinear problems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Kalman filter provides an effective solution to the linear Gaussian filtering problem. However where there is nonlinearity, either in the model specification or the observation process, other methods are required. Methods known generically as ‘particle filters’ are considered. These include the condensation algorithm and the Bayesian bootstrap or sampling importance resampling (SIR) filter. These filters represent the posterior distribution of the state variables by a system of particles which evolves and adapts recursively as new information becomes available. In practice, large numbers of particles may be required to provide adequate approximations and for certain applications, after a sequence of updates, the particle system will often collapse to a single point. A method of monitoring the efficiency of these filters is introduced which provides a simple quantitative assessment of sample impoverishment and the authors show how to construct improved particle filters that are both structurally efficient in terms of preventing the collapse of the particle system and computationally efficient in their implementation. This is illustrated with the classic bearings-only tracking problem.

References

    1. 1)
      • C.J. Masreliez . Approximate non-Gaussian filtering with linear state and observationrelations. IEEE Trans. , 107 - 110
    2. 2)
      • Isard, M., Blake, A.: `Contour tracking by stochastic propagation of conditional density', Proceedings of European conference on Computer vision, 1996, Cambridge, UK, p. 343–356.
    3. 3)
      • W.R. Gilkes , S. Richardson , D.J. Spiegelhalter . (1995) Markov chain Monte Carlo in practice.
    4. 4)
      • H.W. Sorenson , J.C. Spall . (1988) Recursive estimation for nonlinear dynamic systems, Bayesian analysis of time series and dynamic models.
    5. 5)
      • R.S. Bucy . Bayes theorem and digital realiasation for nonlinear filters. J. Astronaut. Sci. , 80 - 94
    6. 6)
      • Mueller, P.: `Posterior integration in dynamic models', 92–A13, Technical report, 1992.
    7. 7)
      • D. Rubin . Comment on The calculation of posterior distributions by data augmentationby Tanner, M.A. and Wong W.H.. J. Am. Stat. Assoc.
    8. 8)
      • N. Gordon , D. Salmond , A.F.M. Smith . Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc.-F , 107 - 113
    9. 9)
      • Pitt, M.K., Shephard, N.: `Filtering via simulation: auxiliary particle filters', Technical report, September 1997.
    10. 10)
      • S.C. Kramer , H.W. Sorenson . Recursive Bayesian estimation using piece-wise constant approximations. Automatica , 789 - 801
    11. 11)
      • N. Gordon , D. Salmond , C. Ewing . Bayesian state estimation for tracking and guidance using the bootstrapfilter. J. Guid., Control Dyn. , 1434 - 1443
    12. 12)
      • D.L. Alspach , H.W. Sorenson . Non-linear Bayesian estimation using Gaussian sum approximation. IEEE Trans. , 439 - 447
    13. 13)
      • G. Kitagawa . Non-Gaussian state-space modelling of non-stationary time series, withdiscussion. J. Am., Stat. Assoc. , 1032 - 1063
    14. 14)
      • B.P. Carlin , N.G. Polson , D.S. Stoffer . A Monte Carlo approach to nonnormal and nonlinear state-space modelling. JASA , 493 - 500
    15. 15)
      • A. Pole , M. West . Efficient Bayesian learning in dynamic models. J. Forecast. , 119 - 136
    16. 16)
      • Carpenter, J.R., Clifford, P., Fearnhead, P.: `Sampling strategies for Monte Carlo filters of non-linear systems', IEE colloquium on Target tracking and data fusion,Digest 96/253, 1996, London, p. 6/1–6/3.
    17. 17)
      • M. West , P.J. Harrison , H.S. Migon . Dynamic generalised linear models and Bayesian forecasting, with discussion. J. Am. Stat. Assoc. , 73 - 97
    18. 18)
      • I. Gerontides , R.L. Smith . Monte Carlo generation of order statistics from a general distribution. Appl. Stat. , 236 - 243
    19. 19)
      • A.F.M. Smith , A.E. Gelfand . Bayesian statistics without tears: a sampling-resampling perspective. Am. Stat. , 84 - 88
    20. 20)
      • A.H. Jazwinski . (1970) Stochastic processes and filtering theory.
    21. 21)
      • Crisan, D., Lyons, T.: `On sequential simulation-based methods for Bayesian filtering', Technical report, 1997.
    22. 22)
      • G. Kitagawa . Monte Carlo filter and smoother for non-gaussian nonlinear state spacemodels. J. Comput. Graph. Stat. , 1 - 25
    23. 23)
      • G.S. Fishman . (1996) Monte Carlo–concepts, algorithms and applications.
    24. 24)
      • C. Berzuini , N.G. Best , W.R. Gilks , C. Larizza . Dynamic conditional independence models and Markov chain Monte Carlomethods. J. Am. Stat. Assoc.
    25. 25)
      • W.G. Cochran . (1997) Sampling techniques.
    26. 26)
      • Moon, J.R., Stevens, C.F.: `An approximate linearisation approach to bearings-only tracking', IEE colloquium on Target tracking and datafusion, Digest 96/253, 1996, p. 8/1–8/14.
    27. 27)
      • J.M. Hammersley , D.C. Handscomb . (1964) Monte Carlo methods.
    28. 28)
      • Crisan, D., Lyons, T.: `A particle approximation of the solution of the Kushner-Stratonovitchequation', Technical report, 1997.
    29. 29)
      • J.S. Liu , R. Chen . Monte Carlo methods for dynamic systems. J. Am. Statist. Assoc.
    30. 30)
      • M. West . Modelling with mixtures. Bayesian Stat. , 503 - 524
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-rsn_19990255
Loading

Related content

content/journals/10.1049/ip-rsn_19990255
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address