EM models for evaluating rain perturbation on the NRCS of the sea surface observed near nadir

Access Full Text

EM models for evaluating rain perturbation on the NRCS of the sea surface observed near nadir

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors address the problem of evaluating the normalised radar cross-section (NRCS) of the sea surface perturbed by the joint effect of rain and wind, when observed close to nadir. They present a model, based on the full wave theory, for evaluating such an NRCS when varying polarisation, frequency and incidence angle (not far from nadir) for different values of wind velocity and of the root mean square height of the corrugation induced by rainfall. Some comparisons are made with the integral equation model results in the case of rain-induced corrugation alone. The two models are found to be in good agreement. In addition, partial comparisons made with experimental data suggest that the proposed model is well grounded and exploitable for application. It is indeed expected that the model can be exploited to improve precipitation measurements over the sea through spaceborne rain radar and to improve wind measurements using scatterometers in the presence of rain.

Inspec keywords: integral equations; atmospheric techniques; spaceborne radar; remote sensing by radar; rain; electromagnetic wave polarisation; backscatter; meteorological radar; radar cross-sections; wind

Other keywords: backscatter; incidence angle; EM models; polarisation; nadir; full wave theory; radar remote sensing; sea surface; normalised radar cross section; measurement technique; precipitation measurement; root mean square height; rain perturbation; rainfall; NRCS; wind; radar scattering; wind velocity; corrugation; spaceborne rain radar; frequency; scatterometers

Subjects: Integral equations (numerical analysis); Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Electromagnetic wave propagation; Winds and their effects in the lower atmosphere; Radar theory; Atmospheric, ionospheric and magnetospheric techniques and equipment; Radar equipment, systems and applications; Water in the atmosphere (humidity, clouds, evaporation, precipitation)

References

    1. 1)
      • R.E. Collin . Electromagnetic scattering from perfectly conducting roughsurfaces (a new full wave method). IEEE Trans. Antennas Propag. , 12 , 1466 - 1477
    2. 2)
      • R.E. Collin . Full wave theories for rough surface scattering: an updatedassessment. Radio Sci. , 5 , 1237 - 1254
    3. 3)
      • F. Capolino , L. Facheris , D. Giuli , F. Sottili . Rainfall profileretrieval through spaceborne rain radars utilising a sea surface NRCS model. IEE Proc. Radar, Sonar Navig. , 4 , 233 - 239
    4. 4)
      • Capolino, F., Facheris, L., Giuli, D., Sottili, F.: `The determination of the sea surface NRCS when corrugated by blowingwind andrainfall: an application to rainfall rate measurement over sea', Proceedings of ICAP 97, April 1997, Edinburgh, UK, p. 2.186–2.190.
    5. 5)
      • E. Bahar , M.A. Fitzwater . Scattering cross section for compositerough surfaces using the unified full wave approach. IEEE Trans. , 7 , 730 - 734
    6. 6)
      • A. Guissard , C. Baufays , P.W. Sobieski . Fully and nonfullydeveloped sea models for microwave remote sensing applications. Remote Sens. Environ. , 25 - 38
    7. 7)
      • K.S. Chen , A.K. Fung . A comparison of backscattering models forrough surfaces. IEEE Trans. Geosci. Remote Sens. , 1 , 195 - 200
    8. 8)
      • E. Bahar . Examination of full-wave solutions and “exact numerical results”for one-dimensional slightly rough surface. J. Geophys. Res. , 17123 - 17131
    9. 9)
      • E. Bahar , D.E. Barrick , M.A. Fitzwater . Computations ofscattering cross sections for composite surfaces and the specification of thewavenumber where spectral splitting occurs. IEEE Trans. , 5 , 698 - 709
    10. 10)
      • J.R. Apel . An improved model of the ocean surface wave vector spectrum andits effects on radar backscattering. J. Geophys. Res. , 16,269 - 16,291
    11. 11)
      • Fung, A.K., Chen, K.S.: `A validation of the IEM surface scatteringmodel', Proceedings of IGARSS'95, July 1995, Florence, Italy, p. 933–935.
    12. 12)
      • J. Tournadre , J.C. Morland . The effects of rain on TOPEX/Poseidon altimeter data. IEEE Trans. Geosci. Remote Sens. , 5 , 1117 - 1135
    13. 13)
      • R.J. Doviak , D.S. Zrnić . (1993) Doppler radar and weather observations.
    14. 14)
      • Capolino, F., Facheris, L., Giuli, D., Sottili, F.: `Estimating RCS of the sea surface perturbed by rain for rainfall rateretrieval', Proceedings of IGARSS'96, May 1996, Lincoln, Nebraska, USA.
    15. 15)
      • L.B. Wetzel . On the theory of electromagnetic scattering from a raindropsplash. Radio Sci. , 6 , 1183 - 1197
    16. 16)
      • A. Stogryn . Equation for calculating the dielectric constant of saline water. IEEE Trans. , 733 - 736
    17. 17)
      • S.L. Durden , Z.S. Haddad , E. Im , A. Kitiyakara , F.K. Li , A.B. Tanner , W.J. Wilson . Measurement of rainfall path attenuationnear nadir: a comparison of radar and radiometer methods at 13.8 GHz. Radio Sci. , 4 , 943 - 947
    18. 18)
      • Bliven, L.F., Sobieski, P.W., Elfouhaily, T.: `Ring-wave frequency spectra: measurements and model', Proceedings of IGARSS'95, July 1995, Florence, Italy, p. 830.
    19. 19)
      • E. Bahar , R.D. Kubik . Tilt modulation of high resolution radarbackscatter cross sections: unified full wave approach. IEEE Trans. Geosci. Remote Sens. , 6 , 1229 - 1242
    20. 20)
      • L.C. Schroeder , P.R. Schaffner , J.L. Mitchell , W.L. Jones . AAFE RADSCAT 13.9-GHz measurements and analysis: wind-speed signatureof the ocean. IEEE J. Ocean. Eng. , 346 - 357
    21. 21)
      • F.T. Ulaby , R.K. Moore , A.K. Fung . (1986) Microwave remote sensing, active and passive.
    22. 22)
      • E.I. Thorsos , D.P. Winebrenner . An examination of the full-wavemethod for rough surface scattering in the case of small roughness. J. Geophys. Res. , 17107 - 17121
    23. 23)
      • A. Guissard , C. Baufays , P.W. Sobieski . Sea surface descriptionrequirements for electromagnetic scattering calculations. J. Geophys. Res. , 2477 - 2492
    24. 24)
      • E. Bahar , B.S. Lee . Full wave solutions for rough-surface bistatic radarcross sections: comparison with small-perturbation, physical optics, numerical,and experimental results. Radio Sci. , 2 , 407 - 429
    25. 25)
      • P.W. Sobieski , L.F. Bliven . Scatterometry of a drop impact on a saltwater surface. Int. J. Remote Sens. , 14 , 2721 - 2726
    26. 26)
      • L.F. Bliven , H. Branger , P.W. Sobieski , J.P. Giovanangeli . An analysis of scatterometer returns from a water surface agitated byartificialrain: evidence that ring-waves are the main feature. Int. J. Remote Sens. , 12 , 2315 - 2329
    27. 27)
      • A.K. Fung . (1994) Microwave scattering and emission models and their applications.
    28. 28)
      • E. Bahar . Review of the full wave solutions for rough surface scattering anddepolarization: comparisons with geometric and physical optics, perturbation, andtwo-scale hybrid solution. J. Geophys. Res. , 5209 - 5224
    29. 29)
      • D. Atlas . Footprints of storms on the sea: a view from spaceborne syntheticaperture radar. J. Geophys. Res. , 7961 - 7969
    30. 30)
      • G.S. Brown . Backscattering from a Gaussian-distributed perfectly conductingrough surface. IEEE Trans. , 3 , 472 - 482
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-rsn_19981901
Loading

Related content

content/journals/10.1049/ip-rsn_19981901
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading