http://iet.metastore.ingenta.com
1887

Seabed classification through multifractal analysis of sidescan sonar imagery

Seabed classification through multifractal analysis of sidescan sonar imagery

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a technique for the classification and analysis of seabed sediments from sidescan sonar images, the origins of which lie in the body of fractal theory. Six seabed types were analysed, namely clay, mud, sand, gravel, stones and rock. These data sets have previously been analysed by several authors who have used techniques based on the power spectrum. The method proposed in the paper allows frequency information to be obtained but without the use of large windows which are generally required for frequency domain measurements. Results are presented for the classification of individual ground truthed sediments and the segmentation of composite images containing these sediments. Correct classification rates of greater then 99% have been obtained and good segmentation accuracy achieved.

References

    1. 1)
      • D. Burns , C.B. Queen , R.C. Chivers . An ultrasonic signal processor for use in underwater acoustics. Ultrasonics , 189 - 191
    2. 2)
      • Schlagintweit, G.E.O.: ‘Real time acoustic bottom classificationfor hydrography’ Canadian HydrographicService, Department of Fisheries and Oceans, 1993.
    3. 3)
      • T.B. Reed , D. Hussong . Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery. J. Geophys. Res. , 7469 - 7490
    4. 4)
      • P. Cervenka , C. de Moustier . Sidescan sonar image processing techniques. IEEE J. , 2 , 108 - 122
    5. 5)
      • R.C. Searle , T.P. LeBas , N.C. Mitchel , M.L. Somers , M.L. Parson , Ph. Patriat . GLORIA image processing:the state of the art. Marine Geophys. Res. , 84 - 94
    6. 6)
      • D.C. Mason , T.P. LeBas , L. Sewell , C. Angelikaki . Deblurring of GLORIA sidescan sonar images. Marine Geophys. Res. , 125 - 1364
    7. 7)
      • N.G. Pace , C. Dyer . Machine classification of sedimentary sea bottoms. IEEE Trans. , 3 , 52 - 56
    8. 8)
      • N.G. Pace , H. Gao . Swathe seabed classification. IEEE J. Oceanic Eng. , 2 , 83 - 90
    9. 9)
      • R.A. Beck . Automatic seabed classification using sidescan sonar. Proc. I.O.A , 3 , 141 - 148
    10. 10)
      • T.M. Edgecock . Towards gain invariant sea bed classification. Proc. I.O.A , 6 , 217 - 224
    11. 11)
      • Maguire, P.M. and Pace, N.G.: ‘Swathe seabed classification’personal communication.
    12. 12)
      • P. Borough . (1985) Fakes facsimiles and facts: fractal models of geophysical phenomena, Science and uncertainty.
    13. 13)
      • Blackledge, J.M., Fowler, E.: `Fractal dimension segmentation of synthetic aperture radar images', IEE Conference, CP-354, image processing and its applications, 1992, p. 445–492.
    14. 14)
      • E. Jakeman . Fresnel scattering by corrugated random surfaces with fractal slope. J. Opt. Soc. Am. , 8 , 11034 - 11041
    15. 15)
      • Lo . Fractal characterisation of sea-scattered signals and detection of sea-surfacetargets. IEE Proc. F , 4 , 243 - 250
    16. 16)
      • S. Elgar , G. Mayer-Kress . Observations of the fractal dimension of deep- and shallow water oceansurface gravity waves. Physica D , 104 - 108
    17. 17)
      • D.L. Jaggard , X. Sun . Fractal surface scattering: a generalised Rayleigh solution. J. Appl. Phys. , 5456 - 5462
    18. 18)
      • J.M. Berkson , J.E. Mathews , N.G. Pace . (1983) Statistical properties of sea-floor roughness, Acoustics and the seabed.
    19. 19)
      • Bell, J.: `A model for the synthesis of sidescan sonar data', September 1995, PhD thesis, Heriot-Watt University.
    20. 20)
      • L.M. Linnett , S.J. Clarke , D.N. Langhorne , C. Graham . Remote sensing of the seabed using fractaltechniques. IEE Electron. Commun. Eng. J. , 195 - 203
    21. 21)
      • Linnett, L.M., Clarke, S.J., Carmichael, D.R.: `Texture analysis of sidescan sonar data', IEE seminar on texture analysis in radar and sonar, 1993, London, p. 2/1–2/6.
    22. 22)
      • S. Peleg , J. Naor , R. Hartley , D. Avnir . Multiple resolution texture analysis and classification. IEEE Trans. , 4 , 518 - 523
    23. 23)
      • L.M. Linnett , D.R. Carmichael , S.J. Clarke . A multiresolution directional operator for textureanalysis. Patt. Recog.
    24. 24)
      • M. James . (1985) Classification algorithms.
    25. 25)
      • B.B. Mandelbrot . (1983) The fractal geometry of nature.
    26. 26)
      • B.B. Chaudhuri , N. Sarkar , P. Kundu . Improved fractal geometry based texture segmentationtechnique. IEEE Proc. E , 5 , 233 - 241
    27. 27)
      • J.M. Keller , R.M. Crownover , R.Y. Chen . Characteristics of natural scenes related to the fractaldimension. IEEE Trans. , 5 , 621 - 627
    28. 28)
      • M. Barnsley . (1988) The science of fractal images.
    29. 29)
      • D. Schertzer , S. Lovejoy . (1991) Non-linear variability in geophysics.
    30. 30)
      • White, R.G., Oliver, C.J.: `Data driven texture segmentation of SAR imagery', IEEE conference radar-92, 1992, p. 415–418.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-rsn_19960472
Loading

Related content

content/journals/10.1049/ip-rsn_19960472
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address