http://iet.metastore.ingenta.com
1887

High-performance 1.3 µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature

High-performance 1.3 µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A high-growth-temperature GaAs spacer layer (HGTSL) is shown to significantly improve the performance of 1.3 µm multilayer InAs/GaAs quantum-dot (QD) lasers. The HGTSL inhibits threading dislocation formation, resulting in enhanced electrical and optical characteristics and hence improved performance of QD lasers. To further reduce the threshold current density and improve the room-temperature characteristic temperature (T0), the high-reflection (HR) coating and p-type modulation doping have been incorporated with the HGTSL technique. A very low continuous-wave room-temperature threshold current of 1.5 mA and a threshold current density of 18.8 A cm−2 are achieved for a three-layer device with a 1 mm HR/HR cavity, while a very low threshold current density of 48 A cm−2 and a negative T0 are achieved in the p-doped lasers.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • H.Y. Liu , I.R. Sellers , T.J. Badcock , D.J. Mowbray , M.S. Skolnick , K.M. Groom , M. Gutierrez , M. Hopkinson , J.S. Ng , J.P.R. David , R. Beanland . Improved performance of 1.3 µm multilayer InAs/GaAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Appl. Phys. Lett. , 704 - 706
    5. 5)
    6. 6)
    7. 7)
      • H.Y. Liu , D.T. Childs , T.J. Badcock , K.M. Groom , I.R. Sellers , M. Hopkinson , R.A. Hogg , D.J. Robbins , D.J. Mowbray , M.S. Skolnick . High-performance 3-layer 1.3 µm InAs/GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents. IEEE Photon. Technol. Lett. , 1139 - 1141
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • S. Fathpour , Z. Mi , P. Bhattacharya , A.R. Kovsh , S.S. Mikhrin , I.L. Krestnikov , A.V. Kozhukhov , N.N. Ledentsov . The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers. Appl. Phys. Lett. , 5164 - 5166
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • G. Park , O.B. Shchekin , D.L. Huffaker , D.G. Deppe . Low-threshold oxide-confined 1.3-µm quantum-dot laser. IEEE Photon. Technol. Lett. , 230 - 232
    16. 16)
      • O.B. Shchekin , G. Park , D.L. Huffaker , Q. Mo , D.G. Deppe . Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity. IEEE Photon. Technol. Lett. , 1120 - 1122
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_20060048
Loading

Related content

content/journals/10.1049/ip-opt_20060048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address