AlGaInN resonant-cavity LED devices studied by electromodulated reflectance and carrier lifetime techniques

Access Full Text

AlGaInN resonant-cavity LED devices studied by electromodulated reflectance and carrier lifetime techniques

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

AlGaInN-based resonant-cavity light-emitting diodes (RCLEDs) emitting in the blue at 480 nm are investigated. The electromodulated reflectivity spectra of these devices exhibit a blue shift of the quantum well (QW) feature when it is perturbed with increasing reverse bias pulses. This is due to a reduction of the quantum-confined Stark-effect and this is used to calculate the average piezo-electric field in the QW as 0.62 ± 0.12 MV/cm. Measurements of the light-current characteristics of processed devices between 20 °C and 85 °C and of the modulation bandwidth are also used to characterise the samples and to compare their performance with conventional LEDs. Compared to AlGaInP-based RCLEDs, it is found that the AlGaInN-based RCLEDs are less temperature sensitive, while their modulation characteristics are similar, and better than conventional InGaN-based LEDs. The radiative lifetime was estimated to be 2 ns at a current density of 170 A/cm2.

Inspec keywords: quantum well devices; aluminium compounds; electro-optical modulation; gallium compounds; light emitting diodes; indium compounds; spectral line shift; optical resonators; radiative lifetimes; III-V semiconductors; electroreflectance

Other keywords: AlGaInN resonant-cavity LED devices; modulation characteristics; quantum-confined Stark-effect; carrier lifetime techniques; AlGaInN; 2 ns; 85 degC; current density; quantum well feature; 480 nm; piezo-electric field; electromodulated reflectance; blue shift; electromodulated reflectivity spectra; radiative lifetime

Subjects: Electro-optical effects (condensed matter); Optical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures); Light emitting diodes; Electro-optical devices; Optical beam modulators; Semiconductor superlattices, quantum wells and related structures

References

    1. 1)
      • T.H. Wood , C.A. Burrus , D.A.B. Miller , D.S. Chemla , T.C. Damen , A.C. Gossard , W. Wiegmann . High-speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure. Appl. Phys. Lett. , 16 - 18
    2. 2)
      • Hild, K.: PhD thesis, University of Surrey, 2003, (7), pp.175–177.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • C. Wetzel , T. Takeuchi , H. Amano , I. Akasaki . Piezoelectric Franz–Keldysh effect in strained GaInN/GaN heterostructures. J. Appl. Phys. , 7 , 3786 - 3791
    7. 7)
      • T. Makimoto , K. Kumakura , T. Nishida , N. Kobayashi . Valence-band discontinuities between InGaN and GaN evaluated by capacitance-voltage characteristics of p-InGaN/n-GaN diodes. J. Electron. Mater. , 4 , 313 - 315
    8. 8)
    9. 9)
      • P.G. Eliseev , M. Osin'ski , H. Li , I. Akimova . Recombination balance in green-light-emitting GaN/InGaN/AlGaN quantum wells. Appl. Phys. Lett. , 24 , 3838 - 3840
    10. 10)
      • T. Takeuchi , C. Wetzel , S. Yamaguchi , H. Sakai , H. Amano , I. Akasaki . Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect. Appl. Phys. Lett. , 12 , 1691 - 1693
    11. 11)
      • P. Maaskant , M. Akhter , B. Roycroft , E. O'Carroll , B. Corbett . Fabrication of GaN-based resonant cavity LEDs. Phys. Status Solidi A , 2 , 348 - 353
    12. 12)
      • C.Y. Lai , T.M. Hsu , W.-H. Chang , K.-U. Tseng , C.-M. Lee , C.-C. Chuo , J.-I. Chyi . Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy. J. Appl. Phys. , 1 , 513 - 533
    13. 13)
      • T. Mukai , M. Yamada , S. Nakamura . Characteristics of InGaN-basedUV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. , 3976 - 3981
    14. 14)
      • M. Kunzer , J. Baur , U. Kaufmann , J. Schneider , H. Amano , I. Akasaki . Properties of Mg and Zn acceptors in MOVPE GaN as studied by optically detected magnetic resonance. Solid-State Electron. , 2 , 189 - 193
    15. 15)
      • E.F. Schubert , N.E.J. Hunt , R.J. Malik , M. Micovic , D.L. Miller . Temperature and modulation characteristics of resonant-cavity light-emitting diodes. J. Lightwave Technnol. , 7 , 1721 - 1729
    16. 16)
      • T. Onuma , S.F. Chichibu , T. Aoyama , K. Nakajima , P. Ahmet , T. Azuhata , T. Chkyow , T. Sota , S. Nagahama , T. Mukai . Influence of internal electric field on the recombination dynamics of localized excitons in an InGaN double-quantum-well laser diode wafer operated at 450 nm. Jpn. J. Appl. Phys. , 12 , 7276 - 7283
    17. 17)
      • F. Chen , A.N. Cartwright , H. Lu , W.J. Schaff . Temperature-dependent optical properties of wurtzite InN. Physica E , 308 - 312
    18. 18)
    19. 19)
      • Lambkin, J.D., Maaskant, P., Akhter, M., Corbett, B., Gibart, P., de Mierry, P., Schenk, D., Beaumont, B., Calleja, E., Sánchez, M.A., Calle, F., McCormack, T., O'Reilly, E., Lancefield, D., Crawford, A., Panzer, K., White, H.: `High temperature nitride sources for plastic optical fibre data buses', 10th Int. Conf. on Plastic Optical Fibres, Amsterdam, Holland, 2001, p. 27–30.
    20. 20)
      • K. Hild , T.E. Sale , T.J.C. Hosea , M. Hirotani , Y. Mizuno , T. Kato . Spectral and thermal properties of red AlGaInP RCLEDs for polymer optical fibre applications. IEE Proc. Optoelectron. , 6 , 220 - 224
    21. 21)
      • D. Ochoa , R. Houdré , R.P. Stanley , C. Dill , U. Oesterle , M. Ilegems . Device simultaneous determination of the source and cavity parameters of a microcavity light-emitting diode. J. Appl. Phys. , 5 , 2994 - 2996
    22. 22)
      • S. Nakamura , G. Fasol , S.J. Pearton . (2000) The blue laser diode: the complete story.
    23. 23)
      • C. Wetzel , T. Takeuchi , H. Amano , I. Akasaki . Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells. Phys. Rev. B, Solid State , 20 , R13302 - R13305
    24. 24)
      • S. Chichibu , T. Azuhata , T. Sota , S. Nakamura . Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett. , 4188 - 4190
    25. 25)
      • P. de Mierry , J.M. Bethoux , H.P.D. Schenk , M. Vaille , E. Feltin , B. Beaumont , M. Leroux , S. Dalmasso , P. Gibart . Vertical cavity InGaN LEDs grown by MOVPE. Phys. Status Solidi A , 2 , 335 - 340
    26. 26)
      • S. Nakamura , S.F. Chichibu . (2000) Introduction to nitride semiconductor blue laser and light emitting diodes.
    27. 27)
      • B. Roycroft , M. Akhter , P. Maaskant , B. Corbett , A. Shaw , L. Bradley , P. de Mierry , M.A. Poisso . Origin of power fluctuations in GaN resonant-cavity light-emitting diodes. Opt. Express , 5 , 736 - 741
    28. 28)
    29. 29)
      • Using SimWindows v1.5.0,1999, by Winston, D.: ‘The program solves square wells only, but we expect it to be sufficient for the flat band case of the QW’, http://www2.ece.jhu.edu/faculty/andreou/495/Resources/ CAD/SimWindows.zip.
    30. 30)
    31. 31)
      • B.O. Seraphin . (1972) Electroreflectance, semiconductors and semimetals, Modulation techniques.
    32. 32)
      • B. Roycroft , M. Akhter , P. Maaskant , P. de Mierry , S. Fernandez , F.B. Naranjo , E. Calleja , T. McCormack , B. Corbett . Experimental characterisation of GaN-based resonant cavity light emitting diodes. Phys. Status Solidi A , 1 , 97 - 102
    33. 33)
    34. 34)
      • H.P.D. Schenk , E. Feltin , P. Vennégués , O. Tottereau , M. Laügt , M. Vaille , B. Beaumont , P. de Mierry , P. Gibart , S. Fernández , F. Calle . Study of (Al,Ga)N Bragg mirrors grown on Al2O3(0001) and Si(111) by metalorganic vapor phase epitaxy. Phys. Status Solidi A , 2 , 899 - 903
    35. 35)
      • A. Weinert . (1998) Kunststofflichtwellenleiter.
    36. 36)
      • F. Bernardini , V. Fiorentini . Spontaneous versus piezoelectric polarization in III-V nitrides: conceptual aspects and practical consequences. Phys. Status Solidi B , 1 , 391 - 398
    37. 37)
      • S.F. Chichibu , T. Azuhata , T. Sota , T. Mukai , S. Nakamura . Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes. J. Appl. Phys. , 9 , 5153 - 5157
    38. 38)
      • T. Takeuchi , S. Sota , M. Katsuragawa , M. Komori , H. Takeuchi , H. Amano , I. Akasaki . Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. , L382 - L385
    39. 39)
      • Corbett, B.: AGETHA Final report, EU-IST-Project, IST-1999-10292, 2003, p. 50.
    40. 40)
      • E.F. Schubert . (2003) Light-emitting diodes.
    41. 41)
      • D.E. Aspnes . Band nonparabolicities, broadening, and internal field distibutions: the spectroscopy of Franz-Keldysh oscillations. Phys. Rev. B, Solid State , 10 , 4228 - 4238
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_20045020
Loading

Related content

content/journals/10.1049/ip-opt_20045020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading