Heterojunction interfacial workfunction internal photoemission detectors for use at 8–20 µm

Access Full Text

Heterojunction interfacial workfunction internal photoemission detectors for use at 8–20 µm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors have already been demonstrated for use in the FIR range with cutoff wavelengths (λc) up to 85 µm. An interesting feature of these detectors is their strong response in the 8–20 µm range. Initial results are reported on HEIWIP detectors operating in the 8–20 µm range. The unoptimised detectors had a peak responsivity of 1.8 A/W at 15.2 µm at 4.2 K. HEIWIPs could be an alternative to already available detectors especially when optimised for higher temperatures. λc can be tailored by changing the Al concentration in the barrier. Responsivity of HEIWIPs can be selectively optimised by using the cavity mechanism and adjusting the Al fraction. It should also be possible to enhance the responsivity by changing the doping concentrations of the detectors.

Inspec keywords: infrared detectors; aluminium; semiconductor doping; semiconductor heterojunctions; infrared spectra; doping profiles; photoemission; photodetectors; work function

Other keywords: 4.2 K; 8 to 20 mum; peak responsivity; FIR range; heterojunction interfacial workfunction internal photoemission detectors; Al; doping concentration

Subjects: Semiconductor doping; Photodetectors; Contact resistance, contact potential, and work functions; Semiconductor junctions; Impurity concentration, distribution, and gradients; Detection of radiation (bolometers, photoelectric cells, i.r. and submillimetre waves detection)

References

    1. 1)
      • F. Cappaso , R. Paiella , R. Martini , R. Colombelli , C. Gmachl , T.L. Myers , M.S. Taubman , R.M. Williams , C.G. Bethea , K. Unterrainer , H.Y. Hwang , D.L. Sivco , A.Y. Cho , A.M. Sevgent , H.C. Liu , E.A. Whittaker . Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE J. Quantum. Electron. , 511 - 532
    2. 2)
      • S. Barbieri , J.-P. Pellaux , E. Studemann , D. Rosset . Gas detection with quantum cascade lasers: an adapted photoacoustic sensor based on Helmholtz resonance. Rev. Sci. Instrum. , 2458 - 2461
    3. 3)
      • D.G. Esaev , S.G. Matsik , M.B.M. Rinzan , A.G.U. Perera , H.C. Liu , M. Buchanan . Resonant cavity enhancement in heterojunction GaAs/AlGaAs terahertz detectors. J. Appl. Phys. , 1879 - 1883
    4. 4)
      • A.L. Korotkov , A.G.U. Perera , W.Z. Shen , J. Herfort , K.H. Ploog , W.J. Schaff , H.C. Liu . Free-carrier absorption in Be- and C-doped GaAs epilayers and far infrared detector applications. J. Appl. Phys. , 3295 - 3300
    5. 5)
      • S. Blaser , D. Hofstetter , M. Beck , J. Faist . Free-space optical data link using Peltier-cooled quantum cascade laser. Electron. Lett. , 778 - 780
    6. 6)
      • R. Martini , C. Bethea , F. Capasso , C. Gmachl , R. Paiella , E.A. Whittaker , H.Y. Hwang , D.L. Sivco , J.N. Baillargeon , A.Y. Cho . Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers. Electron. Lett. , 181 - 183
    7. 7)
      • S.G. Matsik , M.B.M. Rinzan , A.G.U. Perera , H.C. Liu , Z.R. Wasilewski , M. Buchanan . Cutoff tailorability of heterojunction terahertz detectors. Appl. Phys. Lett. , 139 - 141
    8. 8)
      • A.G.U. Perera , S.G. Matsik , B. Yaldiz , H.C. Liu , A. Shen , M. Gao , Z.R. Wasilewski , M. Buchanan . Heterojunction wavelength-tailorable far-infrared photodetectors with response out to 70 µm. Appl. Phys. Lett. , 2241 - 2243
    9. 9)
      • D.D. Coon , R.P. Devaty , A.G.U. Perera , R.E. Sherriff . Interfacial work functions and extrinsic silicon infrared photocathodes. Appl. Phys. Lett. , 1738 - 1740
    10. 10)
      • M.L. Huberman , A. Ksendzov , A. Larsson , R. Terhune , J. Maserjian . Optical absorption by free holes in heavily doped GaAs. Phys. Rev. B, Condens. Matter , 1128 - 1133
    11. 11)
      • A.G.U. Perera , A.G.U. Perera , H.C. Liu , M.H. Francombe . (2001) Semiconductor photoemissive structures for far infrared detection, Handbook of thin film devices: semiconductor optical and electro optical devices.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_20030788
Loading

Related content

content/journals/10.1049/ip-opt_20030788
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading