Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Comparison between planar InP/InGaAs/InP pin photodiodes with symmetrical and asymmetrical doping profiles

Comparison between planar InP/InGaAs/InP pin photodiodes with symmetrical and asymmetrical doping profiles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-speed p-end-illuminated planar InP/InGaAs/InP heterojunction p-i-n photodiodes have been fabricated with symmetrical and asymmetrical doping profiles. Static and dynamic characteristics of both devices were measured for comparison. The device with symmetrical doping profile exhibits inferior characteristics at low reverse bias (<4 V). Nevertheless, if sufficiently reverse biased (≥4 V), a symmetrically doped device can have DC responsivity comparable to, and maximum 3 dB bandwidth higher than, a conventional asymmetrically doped device. The inferior characteristics at low reverse bias and promoted maximum bandwidth of a symmetrically doped device can be, respectively, attributed to the heterointerface exposed in the depletion region and reduced device capacitance caused by an extra-depleted InP region.

References

    1. 1)
      • J.E. BOWERS , C.A. BURRUS . Ultrawide-band long-wavelength p-i-n photodetectors. J. Lightwave Technol. , 1339 - 1350
    2. 2)
      • Y.G. WEY , K. GIBONEY , J. BOWERS , M. RODWELL , P. SILVESTRE , P. THIAGARAJAN , G. ROBINSON . 110 GHz GaInAs/InP double heterostructure p-i-n photodetectors. J. Lightwave Technol. , 1490 - 1499
    3. 3)
      • C.L. HO , W.J. HO , M.C. WU , J.W. LIAW . Light-induced negative differential resistance in planar InP/InGaAs/InP double-heterojunction p-i-n photodiode. Appl. Phys. Lett. , 4008 - 4010
    4. 4)
      • S.R. FORREST , P.H. SCHMIDT , R.B. WILSON , M.L. KAPLAN . Relationship between the conduction band discontinuities and band-gap differences of InGaAsP/InP heterojunctions. Appl. Phys. Lett. , 1199 - 1201
    5. 5)
      • O. WADA , T. KUMAI , H. HAMAGUCHI , M. MAKIUCHI , A. KURAMATA , T. MIKAWA . High-reliability flip-chip GaInAs/InP pin photodiode. Electron. Lett. , 1484 - 1485
    6. 6)
      • S.R. FORREST , I. CAMLIBEL , O.K. KIM , H.J. STOCKER , J.R. ZUBER . Low dark current, high efficiency planar In0.53Ga0.47As/InP p-i-n photodiodes. IEEE Electron Device Lett. , 283 - 285
    7. 7)
      • R. MACK . InGaAs photodiodes for long-wavelength fiberoptic communications. Laser Focus/Electro-Opt. , 136 - 142
    8. 8)
      • J.R. HAYNES , W. SHOCKLEY . The mobility and life of injected holes and electrons in germanium. Phys. Rev. , 835 - 843
    9. 9)
      • P. Hill , J. Schlafer , W. Powazinik , M. Urban , E. Eichen , R. Olshansky . Measurement of hole velocity in n-type InGaAs. Appl. Phys. Lett. , 1260 - 1262
    10. 10)
      • G. LUCOVSKY , R.F. SCHWARZ , R.B. EMMONS . Transit-time considerations in p-i-n diodes. J. Appl. Phys. , 622 - 628
    11. 11)
      • K.J. WILLIAMS , R.D. ESMAN , M. DAGENAIS . Nonlinearities in p-i-n microwave photodetectors. J. Lightwave Technol. , 84 - 96
    12. 12)
      • S.R. FORREST , V.S. BAN , G. GASPARIAN , D. GAY , G.H. OLSEN . Reliability of vapor-grown planar In0.53Ga0.47As/InP p-i-n photodiodes with very high failure activation energy. IEEE Electron Device Lett. , 217 - 219
    13. 13)
      • D. WAKE , R.H. WALLING , S.K. SARGOOD , I.D. HENNING . In0.53Ga0.47As PIN photodiode grown by MOVPE on a semi-insulating InP substrate for monolithic integration. Electron Lett. , 415 - 416
    14. 14)
      • D.A. HUMPHREYS , R.J. KING , D. JENKINS , A.J. MOSELEY . Measurement of absorption coefficients of Ga0.47In0.53As over the wavelength range 1.0–1.7 μm. Electron Lett. , 1187 - 1189
    15. 15)
      • D. WAKE , L.C. BLANK , R.H. WALLING , I.D. HENNING . Top-illuminated InGaAs/InP p-i-n photodiodes with a 3 dB bandwidth in excess of 26 GHz. IEEE Electron Device Lett. , 226 - 228
    16. 16)
      • V. SWAMINATHAN , A.T. MACRANDER . (1991) , Materials aspects of GaAs and InP based structures.
    17. 17)
      • D. WAKE , R.H. WALLING , I.D. HENNING , D.G. PARKER . Planar-junction top-illuminated GaInAs/InP p-i-n photodiodes with bandwidth of 25 GHz. Electron. Lett. , 967 - 968
    18. 18)
      • K. OHNAKA , M. KUBO , J. SHIBATA . A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure. IEEE Trans. Electron Devices , 199 - 204
    19. 19)
      • V.M. ANDREEV , A.T. GORELENOK , M.Z. ZHINGAREV , L.E. KLYACHKIN , V.V. MAMUTIN , N.M. SARADZHISHVILI , V.I. SKOPINA , O.V. SULIMA , N.M. SHMIDT . Investigation of leakage currents in planar p-n junction in InP and in p-i-n InGaAs/InP structures. Sov. Phys.-Semicond. , 411 - 414
    20. 20)
      • M. GALLANT , N. PUETZ , A. ZEMEL , F.R. SHEPHERD . Metalorganic chemical vapor deposition InGaAs p-i-n photodiodes with extremely low dark current. Appl. Phys. Lett. , 733 - 735
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_20000283
Loading

Related content

content/journals/10.1049/ip-opt_20000283
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address