Optimisation of InGaAs infrared photovoltaic detectors

Access Full Text

Optimisation of InGaAs infrared photovoltaic detectors

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The ultimate signal-to-noise performance of infrared photodetectors is limited by the statistical nature of the thermal generation and recombination of charge carriers. Band-to-band Auger processes dominate in a high quality InGaAs used for photovoltaic detector operating at room temperature. The performance of devices operating in the 2–3.4μm spectral range has been analyzed theoretically. Homo- and heterostructure devices have been considered. The use of n+np+ (or n+pp+) with heavily doped regions has been found to prevent the recombination of photogenerated carriers at contacts, but the bulk thermal generation in the heavily doped regions will significantly reduce the performance of the devices.

Inspec keywords: gallium arsenide; photovoltaic effects; III-V semiconductors; Auger effect; infrared detectors; indium compounds; semiconductor doping; statistical analysis

Other keywords: InGaAs infrared photovoltaic detector optimisation; photovoltaic detector; thermal generation; 2 to 3.4 mum; high quality InGaAs; InGaAs; charge carrier recombination; heterostructure devices; statistical nature; bulk thermal generation; room temperature; ultimate signal-to-noise performance; infrared photodetectors; photogenerated carriers; homostructure devices; band-to-band Auger processes; heavily doped regions

Subjects: Electron-surface impact: Auger emission; Semiconductor doping; Probability and statistics; Doping and implantation of impurities; Photoconducting materials and properties; Thermal instruments and techniques; Photodetectors; Probability theory, stochastic processes, and statistics; Photoconduction and photovoltaic effects; photodielectric effects; Detection of radiation (bolometers, photoelectric cells, i.r. and submillimetre waves detection)

References

    1. 1)
      • Fermionics, Data Sheets, (1999), see www.fermionics.com.
    2. 2)
      • J. PIOTROWSKI , W. GAWRON . Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Phys. Technol.
    3. 3)
      • JOSHI, A.M., OLSEN, G.H., PATIL, S.R.: `Reliability of InGaAs detectors and arrays', Proc. SPIE, 1991, 1580, p. 34.
    4. 4)
      • R.U. MARTINELLI , T.J. ZAMEROWSKI , P.A. LONGEWAY . 2.6μm InGaAs photodiodes. Appl. Phys. Lett.
    5. 5)
      • SAJAL PAUL , J.B. ROY , P.K. BASU . Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs. J. Appl. Phys.
    6. 6)
      • S. KALEM . (1990) Semiconductor Science and Technology.
    7. 7)
      • J. KANIEWSKI , J. PIOTROWSKI . InGaAs infrared detectors. Opto Electron. Rev.
    8. 8)
      • S.Z. CHANG , S.C. LEE , C.R. CHEN , L.J. CHEN . Dislocation generation mechanisms of InxGa1−xAs (0≤×≤1) epilayers grown on (001) InP substrates by molecular beam epitaxy. J. Appl. Phys.
    9. 9)
      • S.Z. CHANG , T.C. CHANG , J.L. SHEN , S.C. LEE , Y.F. CHEN . Material and electrical properties of highly mismatched InxGa1−xAs on GaAs by molecular-beam epitaxy. J. Appl. Phys.
    10. 10)
      • BAK-MISIUK, J., KANIEWSKI, J., DOMAGALA, J., REGINSKI, K., ADAMCZEWSKA, J., TRELA, J.: `Reciprocal lattice mapping of InGaAs layers grown on InP (001) and GaAs (001) substrates', Proceedings SPIE, 1999, 3725, p. 47.
    11. 11)
      • T.N. CASSELMAN , P.E. PETERSEN . A comparison of the dominant Auger transitions in p-type (Hg,Cd)Te. Solid State Commun.
    12. 12)
      • JOSHI, A.M., OLSEN, G.H., MASON, S., LANGE, M.J., BAN, V.S.: `Near-infrared (1–3μm) InGaAs detectors and arrays: crystal growth, leakage current and reliability', Proc. SPIE, 1992, 1715, p. 585.
    13. 13)
      • R.G. HUMPREYS . Radiative lifetime in semiconductors for infrared detection. Infrared Phys.
    14. 14)
      • A. AARDVARK , G.G. ALLOGHO , G. BOUGNOT , J.P. DAVID , A. GIANI , S.K. HAYWOOD , G. HILL , P.C. KLIPSTEIN , F. MANSOOR , N.J. MASON , R.J. NICHOLS , F. PASCAL-DELANNOY , M. PATE , L. PONNAMPALAM , P.J. WALKER . Devices and desires in the 2–4μm region based on antimony-containing III-V heterostructures grown by MOVPE. Semicon. Sci. and Technol.
    15. 15)
      • W. GEO , P.R. BERGER , G.J. ZYDZIK , H.M. BRYAN , D.L. SIVCO , A.Y. CHO . In0.53Ga0.47As MSM photodiodes with transparent CTO Schottky contacts and digital superlattice grading. IEEE Trans. Electron Devices
    16. 16)
      • J. SHAH , P. BHATTACHARYA . (1993) Auger recombination coeffiecients in InGaAs, Indium Gallium Arsenide, EMIS Datareviews Series No. 8.
    17. 17)
      • K. OKAMOTO , R. HANAKOKI , K. SAKIJAMA . InGaAs epilayers of high In composition grown on GaAs substrates by molecular beam epitaxy. Jpn. J. Appl. Phys.
    18. 18)
      • A.M. WHITE . The characteristics of minority-carrier exclusion in narrow direct gap semiconductors. Infrared Phys.
    19. 19)
      • W.W. ANDERSON . Absorption constant of Pb1−xSnxTe and Hg1−xCdxTe alloys. Infrared Phys.
    20. 20)
      • B. GELMONT , Z.N. SOKOLOVA , I.N. JASIEWICH . Auger recombination in direct gap p-type semiconductors. Physika i Technika Poluprovodnikov
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19990658
Loading

Related content

content/journals/10.1049/ip-opt_19990658
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading