http://iet.metastore.ingenta.com
1887

Light sources for wavelengths > 2 µm grown by MBE on InP using a strain relaxed buffer

Light sources for wavelengths > 2 µm grown by MBE on InP using a strain relaxed buffer

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Light emitting diodes (LEDs) and lasers operating in the 2 to 3 µm spectral region at room temperature are been demonstrated. The devices were fabricated from InxGa1-xAs/InAsyP1-y double heterostructures grown on n-type InP (100) substrates by molecular beam epitaxy. A strain relaxed buffer layer which incorporates composition reversals was used to reduce the threading dislocation density and to accommodate the large lattice mismatch (up to 2.7%) between the InP substrate and the device active region. Efficient electroluminescence emission at wavelengths between 2 and 3 µm was obtained from the LEDs at room temperature, while diode lasers exhibited coherent emission in the range 2–2.6 µm at temperatures up to 130 K. For one of the LEDs a characteristic absorption was readily observed at 2.7 µm in the diode electroluminescence emission spectrum, corresponding to strong water vapour absorption in the atmosphere. These devices could easily form the key component of an infrared gas sensor for water vapour detection and monitoring at 2.7 µm in a variety of different applications.

References

    1. 1)
      • C. Gorecki . Range finding using frequency-modulated interferometry with a monomodeexternal-cavity laser diode. Jpn. J. Appl. Phys., 1 , 5 , 2833 - 2838
    2. 2)
      • K. Chrzanowski . Comparison of shortwave and longwave measuring thermal-imaging systems. Appl. Opt. , 16 , 2888 - 2897
    3. 3)
      • R.U. Martinelli , R.J. Menna , D.E. Cooper , C.B. Carisle , H. Riris . Near-infrared InGaAs/InP distributed-feedback lasers for spectroscopicapplications. Proc. SPIE Int. Soc. Opt. Eng.
    4. 4)
      • M.K. Parry , A. Krier . Room-temperature Cd-diffused InAsSbP diodes for methane gas detection. Semicond. Sci. Technol. , 9 , 1764 - 1769
    5. 5)
      • R.U. Martinelli , G.H. Olsen . Improved transmission secondary emission from InxGa1-xP/GaAsself-supporting filmsactivated to negative electron affinity. J. Appl. Phys. , 4
    6. 6)
      • R. Beanland , D.J. Dunstan , P.J. Goodhew . Plastic relaxation and relaxed buffer layers for semiconductor epitaxy. Adv. Phys.
    7. 7)
      • S. Farouhar . Electron. Lett.. Electron. Lett.
    8. 8)
      • R.U. Martinelli . Temperature dependence of 2 µm strained-quantum-well InGaAs/InGaAsP/InPdiode lasers. Electron. Lett. , 324 - 326
    9. 9)
      • R.U. Martinelli , T.J. Zamerowski , P.A. Longeway . InGaAs/InAsP lasers with output wavelengths of 1.58–2.45 µm. Appl. Phys. Lett. , 3
    10. 10)
      • D. Garbuzov , D.S. Kim , S.R. Forrest , R. Menna , M. Lange , G.H. Olsen , M. Cohen . Efficient 2.0–2.6 µm wavelength photoluminescence from narrowbandgap InAsP/InGaAs doubleheterostructures grown on InP substrates. J. Electron. Mater. , 9
    11. 11)
      • M. D'Hondt , I. Moerman , P. Demeester . Characterisation of 2% mismatched InGaAs and InAsP layers, grown on differentbuffer layersand at different growth temperatures. J. Crystal Growth , 616 - 620
    12. 12)
      • Peter, M.: ISCS, September 1997, San Diego.
    13. 13)
      • G.H. Olsen , T.J. Zamerowski . (1979) Progress in crystal growth characteristics.
    14. 14)
      • Hopkinson, M.: Mid–IR Optoelectronics conference, September 1996, Lancaster.
    15. 15)
      • A. Sarcedón , F. González-Sanz , E. Calleja , E. Muñoz , S.I. Molina , F.J. Pacheco , D. Araújo , R. García , M. Lourenço , Z. Yang , P. Kidd , D. Dunstan . Design of InGaAs linear graded buffer structures. Appl. Phys. Lett. , 24
    16. 16)
      • J. Tersoff . Dislocation and strain relief in compositionally graded layers. Appl. Phys. Lett. , 7
    17. 17)
      • D.J. Dunstan , S. Young , R.H. Dixon . Geometrical theory of critical thickness and relaxation in strained-layergrowth. J. Appl. Phys.
    18. 18)
      • A. Krier , D.R. Rowe . Photoluminescence of LPE-grown InAs1-x-ySbxPyfor 2.55 µm lasers. Materials Lett. , 225 - 231
    19. 19)
      • M.K. Parry , A. Krier . Efficient 3.3 µm light emitting diodes for the detection of methanegas. Electron. Lett. , 1968 - 1969
    20. 20)
      • Y. Mao , A. Krier . Uncooled 4.2 µm light emitting diodes based on InAs0.91Sb0.09/GaSbgrown by LPE. Opt. Mater. , 55 - 61
    21. 21)
      • A. Krier , Y. Mao . 2.5 µm light emitting diodes in InAs0.36Sb0.20P0.44/InAsfor HF detection. IEE Proc. Optoelectron. , 355 - 359
    22. 22)
      • E.P. O'Reilly , A.R. Adams . Band-structure engineering in strained semiconductor lasers. IEEE J. Quantum Electron. , 366 - 379
    23. 23)
      • A.N. Baranov , V.V. Sherstnev , C. Alibert , A. Krier . New III-V semiconductorlasers emitting near 2.6 µm. J. Appl. Phys. , 3354 - 3356
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19982308
Loading

Related content

content/journals/10.1049/ip-opt_19982308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address