In(As, Sb) superlattice-based emitters for mid-IR wavelengths

Access Full Text

In(As, Sb) superlattice-based emitters for mid-IR wavelengths

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optical, magneto-optical and time-resolved spectroscopies indicate that arsenic-rich InAs/InAs1-x Sbx strained-layer superlattices have a pronounced type-II offset, with electrons confined to the alloy layers, encouragingly high radiative efficiencies at wavelengths well into the midinfrared, and exhibit suppression of Auger recombination. LEDs operating at 3–10 µm now give room temperature powers of 30 µW and are probably at present limited by inadequate electron confinement.

Inspec keywords: Auger effect; infrared spectra; indium compounds; time resolved spectra; magneto-optical effects; infrared sources; semiconductor superlattices; electron-hole recombination; light emitting diodes; III-V semiconductors

Other keywords: alloy layer confined electrons; room temperature powers; type-II offset; high radiative efficiencies; LEDs; arsenic-rich InAs-InAs1-xSbx strained-layer superlattices; 3 to 10 mum; magneto-optical spectroscopies; 30 muW; time-resolved spectroscopies; InAsSb superlattice-based emitters; InAs-InAsSb; mid-IR wavelengths; inadequate electron confinement; Auger recombination suppression

Subjects: Semiconductor superlattices, quantum wells and related structures; Ultrafast optical measurements in condensed matter; Photoelectron spectra of semiconductors and insulators; Light emitting diodes; Infrared and Raman spectra in inorganic crystals; Optical properties of nonmetallic thin films; Electron-surface impact: Auger emission; Charge carriers: generation, recombination, lifetime, and trapping (semiconductors/insulators); Magneto-optical effects (condensed matter)

References

    1. 1)
      • P.J.P. Tang , M.J. Pullin , C.C. Phillips . Free exciton binding energy in InAs. Phys. Rev. B , 7 , 4376 - 4381
    2. 2)
      • J. Faist , F. Capasso , C. Sirtori , D.L. Sivco , J.N. Baillargeon , A.L. Hutchinson , S.-N.G. Chu , A.Y. Cho . High power mid-infrared (λ ~ 5 µm) quantum cascade lasersoperating above roomtemperature. App. Phys. Lett. , 26 , 3680 - 3682
    3. 3)
      • P.J.P. Tang , M.J. Pullin , Y.B. Li , C.C. Phillips , R.A. Stradling , S.J. Chung , W.T. Yuen , L. Hart , D.J. Bain , I. Galbraith . A magneto-photoluminescence investigation of the band offset betweenInAsand arsenic-rich In As1-xSbx alloys. Appl. Phys. Lett. , 17 , 2501 - 2503
    4. 4)
      • M. Adaraliev , M.S. Bresler , O.B. Guslev , S.A. Karandashov , B.A. Matveev , M.N. Stus' , G.N. Talalakin , N.V. Zotova . Radiation recombination in InAsSb/InAsSbP double heterostructures. Semicon. Sci. Tech. , 151 - 156
    5. 5)
      • Y.B. Li , D.J. Bain , L. Hart , M. Livingstone , C.M. Ciesla , M.J. Pullin , P.J.P. Tang , W.T. Yuen , I. Galbraith , C.C. Phillips , C.R. Pidgeon , R.A. Stradling . Band alignment offsets in In(As, Sb)/InAs superlattices. Phys. Rev. B , 4589 - 4595
    6. 6)
      • J.L. Malin , J.R. Meyer , C.L. Felix , J.R. Lindle , L. Goldberg , C.A. Hoffman , F.J. Bartoli , C.-H. Lin , P.C. Chang , S.J. Murry , R.Q. Yang , S.-S. Pei . Type II mid-infrared quantum well lasers. Appl. Phys. Lett. , 21 , 2976 - 2978
    7. 7)
      • S.R. Kurtz , R.M. Biefeld , L.R. Dawson , K.C. Baucom , A.J. Howard . Midwave (4 µm) infrared lasers and light-emitting diodes with biaxiallycompressed InAsSb active regions. Appl. Phys. Lett. , 7 , 812 - 814
    8. 8)
      • H.Q. Le , G.W. Turner , S.J. Eglash , H.K. Choi . High-power diode-laser-pumpedInAsSb/GaSb and GaInAsSb/GaSb lasers emitting from 3 to 4 µm. Appl. Phys. Lett. , 2 , 152 - 154
    9. 9)
      • P.J.P. Tang , A. Norman , R.A. Stradling , C.C. Phillips . Excitonic photoluminescence in high-purityInAs MBE epilayers on GaAs substrates. Semicond. Sci. Tech. , 2135 - 2142
    10. 10)
      • S.R. KURTZ , R.M. BIEFELD . Magnetophotoluminescence of biaxially compressed InAsSb quantum wells. Appl. Phys. Lett. , 3 , 364 - 366
    11. 11)
      • C.M. Ciesla , B.N. Murdin , C.R. Pidgeon , R.A. Stradling , C.C. Phillips , M. Livingstone , I. Galbraith , D.A. Jarosznyski , C.J.M. Langerak , P. Tang , M. Pullin . Supression of Auger recombination in arsenic-richInAs1-xSbx strained layer superlattices. J. Appl. Phys. , 5 , 2994 - 2997
    12. 12)
      • P.J.P. Tang , M.J. Pullin , S.J. Chung , C.C. Phillips , R.A. Stradling , A.G. Norman , Y.B. Li , L. Hart . 4–11 µm infrared emission and 300 K light emitting diodesfrom arsenic rich InAs1-xSbx strained layersuperlattices. Semicond. Sci. Technol. , 1177 - 1180
    13. 13)
      • P. Yu , A.N. Yakovlev , A.N. Baranov , A.A. Imendov , Popov , V.V. Sherstnev . Tunable diode lasersbased on quaternary III-V alloys in the spectral range of 2–4 µm for laser spectroscopy applications. J. de Physique , C4 - 671–676
    14. 14)
      • K.L. Vodopyanov , H. Graener , C.C. Phillips , T.J. Tate . Extrinsic recombination events in protonirradiated InAs/GaAs heterostructures grown by molecular beam epitaxy. J. Phys. D: Appl. Phys. , 2 , 627 - 632
    15. 15)
      • S.N. Smith , C.C. Phillips , R.H. Thomas , R.A. Stradling , B.N. Murdin , C.R. Pidgeon . Interband magneto-optics of InAs1-xSbx. Semicond. Sci. Technol. , 900 - 906
    16. 16)
      • Z.M. Fang , K.Y. Ma , D.H. Jaw , R.M. Cohen , G.B. Stringfellow . Photoluminescence of InSb, InAs,and InAsSb grown by organometallic vapour phase epitaxy. J. Appl. Phys. , 11 , 7034 - 7039
    17. 17)
      • Zhang, Y.H., Le, H.Q., Chow, D.H., Miles, R.H.: `Mid infrared lasers grown on InAs by modulated-molecular-beamepitaxy', Institute of Physics Conference Series, 1995, 144, p. 36–40.
    18. 18)
      • A. Rogalski . InAs1-xSbx infrared detectors. Prog. Quant. Electron. , 191 - 231
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19971380
Loading

Related content

content/journals/10.1049/ip-opt_19971380
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading