Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers

Access Full Text

Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The radial carrier diffusion process inside active regions of gain-guided vertical-cavity surface-emitting lasers (VCSELs) is studied rigorously. To this end, a comprehensive three-dimensional self-consistent VCSEL simulation is used. In the modelling, carrier degeneracy as well as temperature and carrier-concentration dependencies of the diffusion coefficient are taken into account. For the room-temperature operation of the GaAs/AlGaAs/AlAs proton-implanted top-surface-emitting VCSELs, ambipolar diffusion coefficient was found to be relatively low (≃ 7.5 cm2/sec) and nearly constant inside the active region but it increases rapidly beyond this region. It is, however, proved that although very accurate VCSEL modelling requires rigorous treatment of the carrier diffusion process, an average constant value of the diffusion coefficient may be undoubtedly used in quite reliable VCSEL simulations.

Inspec keywords: ion implantation; semiconductor lasers; laser theory; gallium arsenide; III-V semiconductors; laser cavity resonators; semiconductor device models; surface emitting lasers; aluminium compounds; diffusion

Other keywords: reliable VCSEL simulations; comprehensive three-dimensional self-consistent VCSEL simulation; GaAs-AlGaAs-AlAs proton-implanted top-surface-emitting VCSELs; carrier diffusion; carrier-concentration dependencies; radial carrier diffusion process; active region; carrier degeneracy; ambipolar diffusion coefficient; active regions; room-temperature operation; VCSEL modelling; GaAs-AlGaAs-AlAs; gain-guided vertical-cavity surface-emitting lasers

Subjects: Laser resonators and cavities; Semiconductor doping; Semiconductor lasers; Diffusion and ionic conduction in solids; Semiconductor device modelling, equivalent circuits, design and testing; Lasing action in semiconductors; Doping and implantation of impurities; Laser resonators and cavities

References

    1. 1)
      • A.K. Marshak , D. Assaf III . A generalized Einstein relation forsemiconductors. Solid-State Electron. (UK) , 675 - 679
    2. 2)
      • R.P. Sarzała , W. Nakwaski , M. Osiński . Effects of carrierdiffusion on thermal properties of proton-implanted top-surface-emitting lasers(invited paper). Proc. SPIE , 583 - 604
    3. 3)
      • W. Nakwaski . Hole mobility in carbon-doped GaAs and (AlGa)As. Phys. Status Solidi (A) , K47 - K49
    4. 4)
      • C.H. Chong , J. Sarma . Lasing mode selection in vertical-cavitysurface-emitting laser diodes. IEEE Photonics Technol. Lett. , 761 - 764
    5. 5)
      • G. Lengyel , P. Meissner , E. Patzak , K.-H. Zschauer . An analytical solution of the lateral current spreading and diffusionproblem innarrow oxide stripe (GaAl)As/GaAs DH lasers. IEEE J. Quantum Electron. , 618 - 625
    6. 6)
      • M. Shimizu , F. Koyama , K. Iga . Transverse mode analysis forsurface emitting laser using beam propagation method. IEICE Trans. (Japan) , 3334 - 3341
    7. 7)
      • P. Gavrilovic , M. Weber , K. Meehan , M.S. O'Neill . Broadening of the below-threshold near-field profile of GaAs quantum-welllasers due to photon recycling. IEEE J. Quantum Electron. , 623 - 626
    8. 8)
      • G.-L. Tan , N. Bewtra , K. Lee , J.M. Xu . A two-dimensionalnonisothermal finite element simulation of laser diodes. IEEE J. Quantum Electron. , 822 - 835
    9. 9)
      • J. Wilk , R.P. Sarzała , W. Nakwaski . The spatial hole burningeffect in gain-guided vertical-cavity surface-emitting lasers. Electron. Technol. (Poland)
    10. 10)
      • M. Osiński , W. Nakwaski , P. Varangis . Analysis of currentspreading and series resistance in GaAs/AlGaAs proton-implanted top-surface-emittinglasers. Proc. SPIE , 388 - 396
    11. 11)
      • S.Z. Sun , E.A. Armour , K. Zheng , C.F. Schaus . Zinc and tellurium doping in GaAs and AlxGa1-xAs grownby MOCVD. J. Cryst. Growth (Netherlands) , 103 - 112
    12. 12)
      • P.T. Landsberg . The Einstein relation. Proc. IEEE
    13. 13)
      • J.W. Scott , D.B. Young , B.J. Thibeault , M.G. Peters , L.A. Coldren . Design of index-guided vertical-cavity lasers for lowtemperature-sensitivity, sub-milliamp thresholds, and single-mode operation. IEEE J. Sel. Top. Quantum Electron. (USA) , 638 - 648
    14. 14)
      • P. Zhou , J. Cheng , C.F. Schaus , S.Z. Sun , K. Zheng , E. Armour , C. Hains , W. Hsin , D.R. Myers , G.A. Vawter . Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emittinglasers with continuously graded mirrors grown by MOCVD. IEEE Photonics Technol Lett. (USA) , 591 - 593
    15. 15)
      • S.M. Sze . (1981) Physics of semiconductor devices.
    16. 16)
      • P.T. Landsberg . (1952) Proc. R. Soc. A.
    17. 17)
      • E. Spenke . (1958) Electronic semiconductors.
    18. 18)
      • W. Nakwaski , M. Osiński . Current-spreading phenomenon in proton-implantedvertical-cavity top-surface-emitting lasers. Int. J. Optoelectron. (UK) , 119 - 127
    19. 19)
      • S.F. Yu , C.W. Lo . Influence of transverse modes on the dynamicresponse of vertical cavity surface emitting lasers. IEE Proc., Optoelectron. , 189 - 194
    20. 20)
      • N.K. Dutta . Analysis of current spreading, carrier diffusion, and transverse modeguiding insurface emitting lasers. J. Appl. Phys. , 1961 - 1963
    21. 21)
      • A. Valle , J. Sarma , K.A. Shore . Spatial holeburning effects on thedynamics of vertical cavity surface-emitting laser diodes. IEEE J. Quantum Electron. , 1423 - 1431
    22. 22)
      • N. Chinone , K. Aiki , M. Nakamura , R. Ito . Effects of lateralmode and carrier density profile on dynamic behaviors of semiconductor lasers. IEEE J. Quantum Electron. , 625 - 631
    23. 23)
      • K.A. Shore , M.J. Adams . The effect of carrier degeneracy ontransport properties of the double heterostructure injection laser. Appl. Phys. (Germany) , 161 - 164
    24. 24)
      • P.S. Spencer , R. Balasubramanyam , J. Sarma , K.A. Shore . Self-consistent solution of the diffusion equation for an active opticalsemiconductor device. Semicond. Sci. Technol. (UK) , 942 - 947
    25. 25)
      • K. Masu , M. Konagai , K. Takahashi . Acceptor energy level forZn in Ga1-xAlxAs. J. Appl. Phys. , 1060 - 1064
    26. 26)
      • M., Ayabe , Y. Mori , N. Watanabe . An anomaly in the relation ofHall coefficient to resistivity in n-type AlxGa1-xAs. Jpn. J. Appl. Phys. , L55 - L58
    27. 27)
      • O. Buccafusca , J.L.A. Chilla , J.J. Rocca , S. Feld , C. Wilmsen , V. Morozov , R. Leibenguth . Transverse modedynamics in vertical cavity surface emitting lasers excited by fast electrical pulses. Appl. Phys. Lett. , 590 - 592
    28. 28)
      • R.P. Sarzała , W. Nakwaski , M. Osiński . Comprehensive thermal-electricalself-consistent model of proton-implanted top-surface-emitting lasers. Int. J. Optoelectron. (UK) , 357 - 371
    29. 29)
      • R.B. Adler , A.C. Smith , R.L. Longini . (1964) Introduction to semiconductor physics.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19971300
Loading

Related content

content/journals/10.1049/ip-opt_19971300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading