http://iet.metastore.ingenta.com
1887

Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers

Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The radial carrier diffusion process inside active regions of gain-guided vertical-cavity surface-emitting lasers (VCSELs) is studied rigorously. To this end, a comprehensive three-dimensional self-consistent VCSEL simulation is used. In the modelling, carrier degeneracy as well as temperature and carrier-concentration dependencies of the diffusion coefficient are taken into account. For the room-temperature operation of the GaAs/AlGaAs/AlAs proton-implanted top-surface-emitting VCSELs, ambipolar diffusion coefficient was found to be relatively low (≃ 7.5 cm2/sec) and nearly constant inside the active region but it increases rapidly beyond this region. It is, however, proved that although very accurate VCSEL modelling requires rigorous treatment of the carrier diffusion process, an average constant value of the diffusion coefficient may be undoubtedly used in quite reliable VCSEL simulations.

References

    1. 1)
      • G.-L. Tan , N. Bewtra , K. Lee , J.M. Xu . A two-dimensionalnonisothermal finite element simulation of laser diodes. IEEE J. Quantum Electron. , 822 - 835
    2. 2)
      • R.P. Sarzała , W. Nakwaski , M. Osiński . Effects of carrierdiffusion on thermal properties of proton-implanted top-surface-emitting lasers(invited paper). Proc. SPIE , 583 - 604
    3. 3)
      • N.K. Dutta . Analysis of current spreading, carrier diffusion, and transverse modeguiding insurface emitting lasers. J. Appl. Phys. , 1961 - 1963
    4. 4)
      • P.S. Spencer , R. Balasubramanyam , J. Sarma , K.A. Shore . Self-consistent solution of the diffusion equation for an active opticalsemiconductor device. Semicond. Sci. Technol. (UK) , 942 - 947
    5. 5)
      • C.H. Chong , J. Sarma . Lasing mode selection in vertical-cavitysurface-emitting laser diodes. IEEE Photonics Technol. Lett. , 761 - 764
    6. 6)
      • J.W. Scott , D.B. Young , B.J. Thibeault , M.G. Peters , L.A. Coldren . Design of index-guided vertical-cavity lasers for lowtemperature-sensitivity, sub-milliamp thresholds, and single-mode operation. IEEE J. Sel. Top. Quantum Electron. (USA) , 638 - 648
    7. 7)
      • O. Buccafusca , J.L.A. Chilla , J.J. Rocca , S. Feld , C. Wilmsen , V. Morozov , R. Leibenguth . Transverse modedynamics in vertical cavity surface emitting lasers excited by fast electrical pulses. Appl. Phys. Lett. , 590 - 592
    8. 8)
      • S.F. Yu , C.W. Lo . Influence of transverse modes on the dynamicresponse of vertical cavity surface emitting lasers. IEE Proc., Optoelectron. , 189 - 194
    9. 9)
      • R.P. Sarzała , W. Nakwaski , M. Osiński . Comprehensive thermal-electricalself-consistent model of proton-implanted top-surface-emitting lasers. Int. J. Optoelectron. (UK) , 357 - 371
    10. 10)
      • J. Wilk , R.P. Sarzała , W. Nakwaski . The spatial hole burningeffect in gain-guided vertical-cavity surface-emitting lasers. Electron. Technol. (Poland)
    11. 11)
      • M. Shimizu , F. Koyama , K. Iga . Transverse mode analysis forsurface emitting laser using beam propagation method. IEICE Trans. (Japan) , 3334 - 3341
    12. 12)
      • A. Valle , J. Sarma , K.A. Shore . Spatial holeburning effects on thedynamics of vertical cavity surface-emitting laser diodes. IEEE J. Quantum Electron. , 1423 - 1431
    13. 13)
      • N. Chinone , K. Aiki , M. Nakamura , R. Ito . Effects of lateralmode and carrier density profile on dynamic behaviors of semiconductor lasers. IEEE J. Quantum Electron. , 625 - 631
    14. 14)
      • G. Lengyel , P. Meissner , E. Patzak , K.-H. Zschauer . An analytical solution of the lateral current spreading and diffusionproblem innarrow oxide stripe (GaAl)As/GaAs DH lasers. IEEE J. Quantum Electron. , 618 - 625
    15. 15)
      • P. Gavrilovic , M. Weber , K. Meehan , M.S. O'Neill . Broadening of the below-threshold near-field profile of GaAs quantum-welllasers due to photon recycling. IEEE J. Quantum Electron. , 623 - 626
    16. 16)
      • S.M. Sze . (1981) Physics of semiconductor devices.
    17. 17)
      • W. Nakwaski . Hole mobility in carbon-doped GaAs and (AlGa)As. Phys. Status Solidi (A) , K47 - K49
    18. 18)
      • S.Z. Sun , E.A. Armour , K. Zheng , C.F. Schaus . Zinc and tellurium doping in GaAs and AlxGa1-xAs grownby MOCVD. J. Cryst. Growth (Netherlands) , 103 - 112
    19. 19)
      • K. Masu , M. Konagai , K. Takahashi . Acceptor energy level forZn in Ga1-xAlxAs. J. Appl. Phys. , 1060 - 1064
    20. 20)
      • M., Ayabe , Y. Mori , N. Watanabe . An anomaly in the relation ofHall coefficient to resistivity in n-type AlxGa1-xAs. Jpn. J. Appl. Phys. , L55 - L58
    21. 21)
      • E. Spenke . (1958) Electronic semiconductors.
    22. 22)
      • R.B. Adler , A.C. Smith , R.L. Longini . (1964) Introduction to semiconductor physics.
    23. 23)
      • K.A. Shore , M.J. Adams . The effect of carrier degeneracy ontransport properties of the double heterostructure injection laser. Appl. Phys. (Germany) , 161 - 164
    24. 24)
      • P.T. Landsberg . (1952) Proc. R. Soc. A.
    25. 25)
      • P.T. Landsberg . The Einstein relation. Proc. IEEE
    26. 26)
      • A.K. Marshak , D. Assaf III . A generalized Einstein relation forsemiconductors. Solid-State Electron. (UK) , 675 - 679
    27. 27)
      • P. Zhou , J. Cheng , C.F. Schaus , S.Z. Sun , K. Zheng , E. Armour , C. Hains , W. Hsin , D.R. Myers , G.A. Vawter . Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emittinglasers with continuously graded mirrors grown by MOCVD. IEEE Photonics Technol Lett. (USA) , 591 - 593
    28. 28)
      • M. Osiński , W. Nakwaski , P. Varangis . Analysis of currentspreading and series resistance in GaAs/AlGaAs proton-implanted top-surface-emittinglasers. Proc. SPIE , 388 - 396
    29. 29)
      • W. Nakwaski , M. Osiński . Current-spreading phenomenon in proton-implantedvertical-cavity top-surface-emitting lasers. Int. J. Optoelectron. (UK) , 119 - 127
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19971300
Loading

Related content

content/journals/10.1049/ip-opt_19971300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address