Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents

Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The utilisation of plasmonic effects in metallic nanostructures is gaining importance for applications in molecular sensing. Of special interest is the local field enhancement effect, which enables surface-enhanced Raman scattering and significantly boosts the sensitivity of the Raman technique. For in vivo biological research, the ability to excite the resonance of localised surface plasmon-polaritons within the biological window is often desired. A new nanostructure called the nano-crescent is introduced and exhibits strong plasmonic activities within the biological window using a novel intra-particle plasmonic coupling scheme.

References

    1. 1)
    2. 2)
      • L. Ren , G. Chow . Synthesis of nir-sensitive au-au2s nanocolloids for drug delivery. Mat. Sci. Eng. C-bio. S , 113 - 116
    3. 3)
    4. 4)
    5. 5)
      • O. Martin . Plasmon resonances in nanowires with a non-regular cross-section. Top. Appl. Phys. , 183 - 209
    6. 6)
    7. 7)
    8. 8)
      • S. Sershen , S. Westcott , N. Halas , J. West . Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. , 293 - 298
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • J. Kottmann , O. Martin . Retardation-induced plasmon resonances in coupled nanoparticles. Opt. Lett. , 1096 - 1098
    13. 13)
    14. 14)
    15. 15)
      • D. Stuart , A. Haes , C. Yonzon , E. Hicks , R. Van Duyne . Biological applications of localised surface plasmonic phenomenae. IEE Proceedings Nanobiotechnology , 13 - 32
    16. 16)
    17. 17)
      • R. Ruppin , A. Boardman . (1982) Electromagnetic surface modes.
    18. 18)
      • S. Coyle , M. Netti , J. Baumberg , M. Ghanem , P. Birkin , P. Bartlett , D. Whittaker . Confined plasmons in metallic nanocavities. Phys. Rev. Lett.
    19. 19)
      • G. Liu , Y. Lu , J. Kim , J. Doll , L. Lee . Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv. Mat. , 2683 - 2688
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • G. Schatz , R. Van Duyne , P. Griffiths . (2002) Handbook of vibrational spectroscopy.
    24. 24)
      • L. Hirsch , R. Stafford , J. Bankson , S. Sershen , B. Rivera , R. Price , J. Hazle , N. Halas , J. West . Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. P. Natl. Acad. Sci. USA , 13549 - 13554
    25. 25)
    26. 26)
    27. 27)
      • P. Johnson , R. Christy . Optical-constants of noble-metals. Phys. Rev. B , 4370 - 4379
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-nbt_20050016
Loading

Related content

content/journals/10.1049/ip-nbt_20050016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address