http://iet.metastore.ingenta.com
1887

FDTD analysis of a slot-loaded meandered rectangular patch antenna for dual-frequency operation

FDTD analysis of a slot-loaded meandered rectangular patch antenna for dual-frequency operation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Microwaves, Antennas and Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The characteristics of a compact, dual-frequency antenna using the slot-loaded meandered rectangular microstrip patch are analysed. The theoretical analysis is based on the finite-difference time-domain (FDTD) method. The FDTD programs are developed and validated by available measurement results. Three different dual-frequency antennas, which include the slot-loaded rectangular patch, the slot-loaded meandered rectangular patch with five slits, and the slot-loaded meandered rectangular patch with 10 slits, are analysed and compared. It is shown that more slits and longer slits could lead to a smaller size of the dual-frequency antenna. The effects of slit lengths on the resonant frequencies and the frequency ratio of the slot-loaded meandered rectangular patch with 10 slits are shown. Several design curves are presented. The electric current distributions on the patch at two resonant frequencies are described, together with the results illustrating the electric field distributions under the patch. The radiation patterns of three dual-frequency antennas are also presented and compared.

References

    1. 1)
      • J.R. James , P.S. Hall . (1989) Handbook of microstrip antennas.
    2. 2)
      • S.C. Gao , S.S. Zhong . Analysis and design of dual-polarized microstrip arrays. Int. J. RF Microwave CAE , 1 , 42 - 48
    3. 3)
      • S.C. Gao , S.S. Zhong . Dual-polarized microstrip antenna array with highisolation fed by coplanar network. Microwave Opt. Technol. Lett. , 3 , 214 - 216
    4. 4)
      • S.C. Gao . (2000) Dual-polarized microstrip antenna elements and arrays for active integration.
    5. 5)
      • S.A. Long , M.D. Waton . A dual-frequency stacked circular disc antenna. IEEE Trans. , 3 , 281 - 285
    6. 6)
      • J.S. Dahele , K.F. Lee , D.P. Wong . Dual frequency stacked annular-ring microstrip antenna. IEEE Trans. , 11 , 1281 - 1285
    7. 7)
      • J. Wang , R. Fralich , C. Wu , J. Litva . Multifunctional aperture-coupled stacked antenna. Electron. Lett. , 25 , 2067 - 2068
    8. 8)
      • F. Croq , D. Pozar . Multifrequency operation of microstrip antennas usingaperture coupled parallel resonators. IEEE Trans. , 11 , 11367 - 1374
    9. 9)
      • W.F. Richards , S.E. Davidson , S.A. Long . Dual-band reactively loaded microstrip antenna. IEEE Trans. , 5 , 55 - 560
    10. 10)
      • S.E. Davidson , S.A. Long , W.F. Richards . Dual-band microstrip antenna withmonolithic reactive loading. Electron. Lett. , 21 , 936 - 937
    11. 11)
      • R.B. Waterhouse , N.V. Shuley . Dual-frequency microstrip rectangular patches. Electron. Lett. , 7 , 606 - 607
    12. 12)
      • S.S. Zhong , Y.T. Lo . Single-element rectangular microstrip antenna for dual-frequency operation. Electron. Lett. , 8 , 298 - 300
    13. 13)
      • B.F. Wang , Y.T. Lo . Microstrip antenna for dual-frequency operations. IEEE Trans. , 9 , 938 - 943
    14. 14)
      • A. Serrano-Vaello , D. Sanchez-Hernandez . Printed antennas for dual-band GSM/DCS 1800 mobile handsets. Electron. Lett. , 2 , 140 - 141
    15. 15)
      • K.L. Wong , W.S. Chen . Compact microstrip antenna with dual-frequencyoperation. Electron. Lett. , 8 , 646 - 647
    16. 16)
      • W.S. Chen . Single-feed dual-frequency rectangular microstrip antenna withsquare slot. Electron. Lett. , 3 , 231 - 232
    17. 17)
      • S.C. Gao , J. Li . FDTD analysis of a size-reduced, dual-frequency patch antenna. Progr. Electromag. Res. , 59 - 77
    18. 18)
      • S. Maci , G. Biffi Gentili , P. Piazzesi , C. Salvador . Dual-band slot-loaded patch antenna. IEE Proc., Microw. Antennas Propag. , 225 - 232
    19. 19)
      • J.H. Lu , K.L. Wong . Slot-loaded meandered rectangular microstrip antennawith compact dual-frequency operation. Electron. Lett. , 11 , 1048 - 1049
    20. 20)
      • K.S. Yee . Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. , 302 - 307
    21. 21)
      • Z.P. Liao , H.L. Wong , G.P. Yang , Y.F. Yuan . A transmitting boundary fortransient wave analysis. Scientia Sinica , 10 , 1063 - 1076
    22. 22)
      • K.K. Mei , J. Fang . Superabsorption – a method to improve absorbing boundary conditions. IEEE Trans. , 1001 - 1010
    23. 23)
      • S.C. Gao , J. Li . FDTD analysis of serial corner-fed square patch antennas forsingle- and dual-polarized applications. IEE Proc., Microw. Antennas Propag.
    24. 24)
      • K.C. Gupta , P.S. Hall . (2000) Analysis and design of integrated circuit-antenna modules.
    25. 25)
      • S.C. Wu , N.G. Alexopoulos , O. Fordham . Feeding structure contribution toradiation by patch antennas with rectangular boundaries. IEEE Trans.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-map_20010225
Loading

Related content

content/journals/10.1049/ip-map_20010225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address