Impedance matrix compression using effective quadrature filter

Access Full Text

Impedance matrix compression using effective quadrature filter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Microwaves, Antennas and Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An effective quadrature mirror filter (QMF) proposed by Vaidyanathan has been used to solve 2D scattering problems. QMF has been popular for some time in digital signal processing, under the names of multirate sampling, wavelets, etc. In this work, the impulse response coefficients of QMF were used to construct the wavelet transform matrix. Using the matrix to transform the impedance matrices of 2D scatterers produces highly sparse moment matrices that can be solved efficiently. Such a presentation provides better sparsity than the celebrated and widely used Daubechies wavelets. These QMF coefficients are dependent on the filter parameters such as transition bandwidth and filter length. It was found that the sharper the transition bandwidth, the greater the reduction in nonzero elements of the impedance matrix. It also can be applied in the wavelet packet algorithm to further sparsify the impedance matrix. Numerical examples are given to demonstrate the effectiveness and validity of our finding.

Inspec keywords: impedance matrix; sparse matrices; wavelet transforms; transient response; electromagnetic wave scattering; channel bank filters; quadrature mirror filters; lattice filters

Other keywords: wavelet transform matrix; 2D scattering problems; effective quadrature filter; filter parameters; impulse response coefficients; nonzero elements; quadrature mirror filter; wavelet packet algorithm; filter length; QMF coefficients; impedance matrix compression; sparsity; sparse moment matrices; transition bandwidth

Subjects: Integral transforms in numerical analysis; Electromagnetic wave propagation; Linear algebra (numerical analysis); Filtering methods in signal processing

References

    1. 1)
      • I. Daubechies . (1992) Ten lectures on wavelets.
    2. 2)
      • G. Wang . On the utilization of periodic wavelet expansions in moment methods. IEEE Trans. , 2495 - 2498
    3. 3)
      • J.-L. Leou , J.-M. Huang , S.-K. Jeng , H.-J. Li . Application of wavelets to scattering problems of inhomogeneous dielectricslabs. IEICE Trans. Commun. E82-A
    4. 4)
      • R.R. Coifman , M.V. Wickerhauser . Entropy-based algorithms for best basis selection. IEEE Trans. , 2 , 713 - 718
    5. 5)
      • M.V. Wickerhauser . (1994) Adapted wavelet analysis from theory to software.
    6. 6)
      • A. Grossman , J. Morlet . Decomposition of Hardy functions into square integrablewavelets of constant shapes. SIAM J. Math. Anal. , 723 - 736
    7. 7)
      • H. Deng , H. Ling . Moment matrix sparsification using adaptive wavelet packet transform. Electron. Lett. , 1127 - 1128
    8. 8)
      • G. Beylkin , R. Coifman , V. Rokhlin . Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. , 141 - 183
    9. 9)
      • P.P. Vaidyanathan . (1993) Multirate systems and filterbanks.
    10. 10)
      • P.P. Vaidyanathan . Passive cascaded lattice structures for low sensitivity FIR filter design,with applications to filter banks. IEEE Trans. , 1045 - 1064
    11. 11)
      • Z. Xiang , Y. Lu . An effective wavelet matrix transform approach for efficientsolutions of electromagnetic integral equations. IEEE Trans. , 8 , 1205 - 1213
    12. 12)
      • H. Kim , H. Ling , C. Lee . A fast moment method algorithm using spectral domain wavelet concepts. Radio Sci. , 1253 - 1261
    13. 13)
      • G. Strang , T. Nguyen . (1996) Wavelets and filter banks.
    14. 14)
      • J.-M. Huang , J.-L. Leou , S.-K. Jeng , J.-H. Tarng . Application of mix-phase wavelets to sparsify impedance matrix. IEICE Trans. Commun. E82-B
    15. 15)
      • H. Kim , H. Lin . On the application of fast wavelet transform to the integral equationsolutionof electromagnetic scattering problems. Microwave Opt. Technol. Lett. , 3 , 168 - 173
    16. 16)
      • X. Zhu , G. Lei , G. Pan . On the application of fast and adaptive periodic Battle-Lemari'ewavelets to modeling of multiple lossy transmission lines. J. Comp. Phys. , 299 - 311
    17. 17)
      • G. Pan , M. Toupikov , J. Du , B.K. Gilbert . Use of Coifman intervallic wavelets in 2-D and 3-D scattering problems. IEE Proc. , 6 , 471 - 480
    18. 18)
      • B.Z. Steinberg , Y. Leviatan . On the use of wavelet expansions in the method of moments. IEEE Trans. , 610 - 619
    19. 19)
      • A. Cohen , I. Daubechies , J.-C. Feauveau . Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. , 485 - 500
    20. 20)
      • P.P. Vaidyanathan , P.Q. Hoang . Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks. IEEE Trans. , 1 , 81 - 94
    21. 21)
      • G. Pan . Orthogonal wavelets with applications in electromagnetics. IEEE Trans. , 975 - 982
    22. 22)
      • B. Alpert , G. Beylkin , R. Coifman , V. Rokhlin . Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput. , 1 , 159 - 184
    23. 23)
      • R.L. Wagner , W.C. Chew . A study of wavelets for the solution of electromagnetic integral equations. IEEE Trans. , 802 - 810
    24. 24)
      • Golik, W.L.: `Conditioning of biorthogonal wavelet transforms and iterative solversforelectromagnetic integral equations', Proceedings of 15th annual review of Progress in Applied ComputationalElectromagnetics, 1999, Naval Postgraduate SchoolMonterey, CA.
    25. 25)
      • T.K. Sarkar , C. Su , R. Adve , M. Salazar-Palma , L. Garcia-Castillo , R.R. Boix . A tutorial on wavelets techniques electrical engineering perspective,part1: discrete wavelet transform. IEEE Antennas Propag. Mag. , 5 , 49 - 69
    26. 26)
      • W.L. Golik . Wavelet packets for fast solution of electromagnetic integral equations. IEEE Trans. , 5 , 618 - 624
    27. 27)
      • R.F. Harrington . (1961) Time-harmonic electromagnetic fields.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-map_20000361
Loading

Related content

content/journals/10.1049/ip-map_20000361
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading