http://iet.metastore.ingenta.com
1887

General edge element approach to lossy and dispersive structures in anisotropic media

General edge element approach to lossy and dispersive structures in anisotropic media

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Microwaves, Antennas and Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new functional for general anisotropic 2½D guided-wave structures is derived, based on a rigorous 3D analysis. An impedance boundary condition at the interface between the anisotropic material and the imperfect conducting ground plane is proposed. The computation domain includes the cross-section of the lossy conducting line where the size of the cross-section has the same order as the skin depth, and the standard impedance boundary condition is no longer held. The vector element analysis procedure, and the subspace iteration method, are then used to find the partial or total system modes. Numerical examples of anisotropic dielectric image waveguide, PFEE bilateral fin line, and two coupled asymmetrical dual lossy transmission lines with finite conductivity and finite thickness are presented. Good agreement with previous publications is observed.

References

    1. 1)
      • B.K. Gilbert , G.W. Pan . Signal processors operating at clock rates above 200 MHz. J. Microelectron. Syst. Integr. , 2 , 143 - 160
    2. 2)
      • P. Silvester , R.L. Ferrari . (1996) Finite elements for electrical engineers.
    3. 3)
      • H. Whitney . (1957) Geometric integration theory.
    4. 4)
      • J.C. Nedelec . Mixed finite elements in R3. Numer. Meth. , 315 - 341
    5. 5)
      • J.F. Lee , D.K. Sun , Z.J. Cendes . Full-wave analysis of dielectric waveguides using tangential vector finite elements. IEEE Trans. Microw. Theory Tech. , 8 , 1262 - 1271
    6. 6)
      • J. Lee . Finite element analysis of lossy dielectric waveguides. IEEE Trans. Microw. Theory Tech. , 6 , 1025 - 1031
    7. 7)
      • J. Jin . (1993) The finite element methods in electromagnetics.
    8. 8)
      • W.C. Chew . (1990) Waves and fields in inhomogeneous media.
    9. 9)
      • R.E. Collin . (1991) Field theory of guided waves.
    10. 10)
      • J.D. Jackson . (1999) Classical electrodynamics.
    11. 11)
      • T.B.A. Senior . Impedance boundary conditions for imperfectlyconducting surface. Appl. Sci. Res. B , 430 - 451
    12. 12)
      • J. Tan , G. Pan . A new edge element analysis of dispersivewaveguiding structures. IEEE Trans. Microw. Theory Tech. , 11 , 2600 - 2607
    13. 13)
      • V.K. Tripathi , H. Lee . Spectral domain computation of characteristicimpedances and multiport parameters of multiple coupledmicrostrip lines. IEEE Trans. Microw. Theory Tech.
    14. 14)
      • G. Slade , K. Webb . Computation of characteristic impedancefor multiple microstrip transmission lines using a vector finite elementmethod. IEEE Trans. Microw. Theory Tech. , 1 , 34 - 40
    15. 15)
      • J. Tan , G. Pan , B. Gilbert . Circuit parameter extraction fromthe field theory in the full wave analysis. IEEE Trans. Microw. Theory Tech.
    16. 16)
      • F. Olyslager , N. Fache , D. De Zutter . New fast and accurateline parameters calculation of general multiconductor transmissionlines in multilayered media. IEEE Trans. Microw. Theory Tech. , 901 - 909
    17. 17)
      • K.J. Bathe , E.L. Wilson . (1976) Numerical methods in finite element analysis.
    18. 18)
      • K. Hayata . Finite-element formulation for lossy waveguide. IEEE Trans. Microw. Theory Tech. , 268 - 276
    19. 19)
      • C. Bulutay , S. Prasad . Analysis of millimeter waveguideson anisotropic substrates using the 3D transmission-line matrixmethod. IEEE Trans. Microw. Theory Tech. , 1119 - 1125
    20. 20)
      • W. Haydl . Experimentally observed frequency variation of the attenuationof millimeter-wave coplanar transmission lines with thinmetallization. IEEE Microw. Guid. Wave Lett. , 8 , 322 - 324
    21. 21)
      • J. Ke , C. Chen . Dispersion and attenuation characteristics ofcoplanar waveguides with finite metalization thickness and conductivity. IEEE Trans. Microw. Theory Tech. , 5 , 1128 - 1135
    22. 22)
      • M. Tsuk . A hybrid method for the calculation of the resistanceand inductance of transmission lines with arbitrary crosssections. IEEE Trans. Microw. Theory Tech. , 8 , 1338 - 1347
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-map_19970507
Loading

Related content

content/journals/10.1049/ip-map_19970507
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address