http://iet.metastore.ingenta.com
1887

Improved prediction of IF2 and IG indices using neural networks

Improved prediction of IF2 and IG indices using neural networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Microwaves, Antennas and Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper presents an investigation into the use of artificial neural networks to predict the values of the IF2 and IG ionospheric indices. Since 1982, the World Data Centre C1 for Solar-Terrestrial Physics has produced predictions for these indices using an adaptation of the McNish-Lincoln technique for predicting sunspot numbers. It is demonstrated that significantly more accurate predictions are obtained using artificial neural networks, which form the basis of predictions which will in future be issued by the World Data Centre.

References

    1. 1)
      • M. Lockwood . Simple M-factor algorithm for improved estimation of the basicmaximum usable frequency of radio waves reflected from the ionospheric F-region. IEE Proc. F , 4 , 296 - 302
    2. 2)
      • C.M. Minnis . A new index of solar activity based on ionospheric measurements. J. Atmos. Terr. Phys. , 310 - 321
    3. 3)
      • C.M. Minnis , G.H. Bazzard . A monthly ionospheric index of solar activity based on F2-layer ionizationat eleven stations. J. Atmos. Terr. Phys. , 297 - 305
    4. 4)
      • R.Y. Liu , P.A. Smith , J.W. King . A new solar index which leads to improved foF2 predictions using theCCIR atlas. Telecommun. J. , 8 , 408 - 414
    5. 5)
      • Wild, M.N. Private communication. World Data Centre Cl forSolar-TerrestrialPhysics, 1994.
    6. 6)
      • A.G. McNish , J.V. Lincoln . Prediction of sunspot numbers. Trans. Am. Geophys. Union , 5 , 673 - 685
    7. 7)
      • H.C. Koons , D.J. Gorney . A sunspot maximum prediction using a neural network. EOS , 18 , 677 - 678
    8. 8)
      • K. Macpherson . Neural network computation techniques applied to solar activity prediction. Adv. Space Res. , 9 , 447 - 450
    9. 9)
      • Brown, J.C., McInnes, C.R., Macpherson, K.P., Conway, A.J.: `Neural network approach to solar activity prediction: ESOC Contract 9810/92/D/IMFinal report', CRP 3883, Technical report, 1994.
    10. 10)
      • F. Fessant , S. Bengio , D. Collobert . On the prediction of solar activity using different neural network models. Ann. Geophys. , 20 - 26
    11. 11)
      • C. de Groot , D. Würtz . Plain backpropagation and advanced optimization algorithms: a comparativestudy. Neurocomput. , 153 - 161
    12. 12)
      • R.A. Calvo , H.A. Ceccatto , R.D. Piacentini . Neural network prediction of solar activity. Astrophys. J. , 916 - 921
    13. 13)
      • H. Lundstedt . Neural networks and predictions of solar-terrestrial effects. Planet. Space Sci. , 4 , 457 - 464
    14. 14)
      • J.V. Hernandez , T. Tajima , W. Horton . Neural net forecasting for geomagnetic activity. Geophys. Res. Lett. , 23 , 2707 - 2710
    15. 15)
      • H. Lundstedt , P. Wintoft . Prediction of geomagnetic storms from solar wind data with the use ofa neural network. Ann. Geophys. , 19 - 24
    16. 16)
      • Hecht-Nielsen, R.: `Kolmogorov's mapping neural network existence theorem', Proceedings of the IEEE first international conference on Neuralnetworks, 1987, 2, San Diego, p. 445–462.
    17. 17)
      • D. Rumelhart , G. Hinton , R. Williams . Learning representations by backpropagating errors. Nature , 533 - 536
    18. 18)
      • R. Fletcher , M.J.D. Powell . A rapidly convergent descent method for minimization. Comput. J. , 163 - 168
    19. 19)
      • H.D.I. Abarbanel , R. Brown , J.J. Sidorich , L.S. Tsimring . The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. , 4 , 1331 - 1392
    20. 20)
      • P. Grassberger , I. Procaccia . Characterization of strange attractors. Phys. Rev. Lett. , 5 , 346 - 349
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-map_19960575
Loading

Related content

content/journals/10.1049/ip-map_19960575
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address