http://iet.metastore.ingenta.com
1887

Semiconductor Raman laser as a tool for wideband optical communications

Semiconductor Raman laser as a tool for wideband optical communications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings J (Optoelectronics) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper describes the fundamental properties of the GaP-AlxGa1-xP heterostructure used for the semiconductor Raman laser and the low threshold operation of the buried heterostructure Raman laser, together with the first demonstration of lasing by a new structure having a layer with an intermediate refractive index for pump power introduction, which reduces the loss for the Stokes field. The paper also describes the important applications of the semiconductor Raman laser to optical-heterodyne demodulation, and frequency difference mixing for frequency-tunable far-inra-red generation, as one of essential tools for very wideband optical communication beyond 1 THz.

References

    1. 1)
      • J. NISHIZAWA . History and characteristics of semiconductor laser. Denshi Kagaku , 17 - 20
    2. 2)
      • J. Nishizawa . Esaki diode and long wavelength laser. Denshi Gijutsu , 101 - 106
    3. 3)
      • Watanabe, Y., Nishizawa, J.: Japanese Patents No. 273217, 1957 and 762975, 1960.
    4. 4)
      • Nishizawa, J., Suto, K.: Japanese Patent No. 844479, 1972.
    5. 5)
      • J. Nishizawa , K. Suto . Semiconductor Raman laser. J. Appl. Phys. , 2429 - 2431
    6. 6)
      • Nishizawa, J., Suto, K.: `Japanese Patent Application 56–84 809', , .
    7. 7)
      • J. Nishizawa , K. Suto , K.J. Button . (1983) Semiconductor Raman and Brillouin Lasers for Far-Infrared Generation, Infrared and Millim. Waves.
    8. 8)
      • K. Suto , J. Nishizawa . Characteristics of the epitaxial semiconductor Raman laser. IEE Proc. J. Optoelectron. , 259 - 263
    9. 9)
      • Nishizawa, J., Watanabe, Y.: Japanese Patents No. 205068, 1950, No. 221218, 1953.
    10. 10)
      • Nishizawa, J., Watanabe, Y.: `Reverse bais characteristics of a semiconductor rectifier', Record of electrical and communication engineering conversation, 1952, 21, Tohoku University, p. 37–40.
    11. 11)
      • K. Suto , J. Nishizawa . Low-threshold semiconductor Raman laser. IEEE J. Quantum Electron. , 1251 - 1254
    12. 12)
      • Nishizawa, J., Suto, K.: 61–64458, 1986, Japanese Patent Application.
    13. 13)
      • J. Nishizawa , K. Motoya , K.J. Button . (1988) The CW GaAs TUNNETT diodes, Topics in millimeter wave technology.
    14. 14)
      • J. Nishizawa , K. Motoya , K.J. Button . (1988) SIT as ballistic device, Topics in millimeter wave technology.
    15. 15)
      • C.K.N. Patel , E.D. Shaw . Tunable stimulated Raman scattering from conduction electrons in InSb. Phys. Rev. Lett. , 451 - 455
    16. 16)
      • C.R. Pidgeon , B. Lax , R.L. Aggarwal , C.E. Chase , F. Brown . Tunable coherent radiation source in the 5-μ region. Appl. Phys. Lett. , 333 - 335
    17. 17)
      • J.M. Yarborough , S.S. Sussman , H.E. Puthoff , R.H. Pantel , B.C. Johnson . Efficient, tunable optical emission from LiNbO3 without a resonator. Appl. Phys. Lett. , 102 - 105
    18. 18)
      • R.H. Stolen , E.P. Ippen , A.R. Tynes . Raman oscillation in glass optical waveguides. Appl. Phys. Lett. , 62 - 64
    19. 19)
      • K. Suto , T. Kimura , J. Nishizawa . Hetero-structure semiconductor Raman laser. IEE Proc. J., Optoelectronics , 215 - 220
    20. 20)
      • K. Suto , T. Kimura , J. Nishizawa . Lateral optical confinement of the heterostructure semiconductor Raman laser. Appl. Phys. Lett. , 1457 - 1458
    21. 21)
      • K. Suto , S. Ogasawara , T. Kimura , J. Nishizawa . J. Appl. Phys..
    22. 22)
      • J. Nishizawa , Y. Okuno . Liquid phase epitaxy of GaP by a temperaturedifference method under controlled vapor pressure. IEEE Trans. , 716 - 721
    23. 23)
      • J. Nishizawa , Y. Okuno , M. Herman . (1980) Stoichiometric crystallization method of III-V compounds for LEDs and injection lasers, Semiconductor optoelectronics.
    24. 24)
      • K. Suto , T. Kimura , S. Ogasawara , J. Nishizawa . , J. Crystal Growth.
    25. 25)
      • K. Suto , J. Nishizawa . Semiconductor Raman laser. IEE Proc. J. Optoelectron. , 81 - 84
    26. 26)
      • Y.R. Shen , N. Bloembergen . Theory of stimulated Brillouin and Raman scattering. Phys. Rev. , 1787 - 1805
    27. 27)
      • J. Nishizawa , Y. Oyama , M. Fukase , H. Tadano . Lattice strain and misfit dislocations in GaAs-GaAlAsP heterojunctions. J. Crystal & Molec. Struct. , 123 - 147
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-j.1990.0010
Loading

Related content

content/journals/10.1049/ip-j.1990.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address