http://iet.metastore.ingenta.com
1887

Large-signal modulation response of monolithic active integrated-optic waveguides

Large-signal modulation response of monolithic active integrated-optic waveguides

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings J (Optoelectronics) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A large-signal dynamic travelling optical flux analysis of a GaAs/AlGaAs monolithic active integrated-optic waveguide (AIOW) is presented. The model uses a combination of numerical and analytical techniques to solve the photon flux and carrier density conservation equations in time, the longitudinal dimension and optical wavelength. An analysis of the fundamental and harmonic frequency response of the waveguide is obtained, along with pulse and sinusoidal modulation response. This analysis is compared with a small signal analysis of the guide, and the two models are found to be in extremely close agreement for the limiting case of a small signal input applied to the large signal model.

References

    1. 1)
      • Garrett, B., Moule, D.J., Armistead, C.J., Bourne, W.O., Champelovier, J., Baulcomb, R.S., Collar, A.J.: `A monolithically integrated two wavelength DFB laser source for WDM optical communications systems', Paper 25, Conf. Abstract, SIOE'89, March 1989, Cardiff, p. 10–21.
    2. 2)
      • R.F. Ormondroyd , P.N. Pennington , M.C.J. Perkins . Nonlinear static characteristics of monolithic active integrated-optic waveguides. IEE Proc. Pt. J. , 59 - 71
    3. 3)
      • W.I. Way . Large signal non-linear distortion prediction for a single-mode laser diode under microwave intensity modulation. IEEE. J. Lightwave Technology , 305 - 315
    4. 4)
      • J. Buus . Principles of semiconductor laser modelling. IEE Proc. Pt. J , 42 - 51
    5. 5)
      • K.Y. Lau , I. Ury , N. Bar-Chaim . Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers. Appl. Phys. Lett. , 329 - 331
    6. 6)
      • M.C.J. Perkins , R.F. Ormondroyd . Transient analysis of optical bistability in inhomogeneously pumped lasers. IEE Proc. Pt. J. , 133 - 145
    7. 7)
      • K. Otsuka . Proposals and analysis on laser amplifier based integrated optical circuits. IEEE J. Quantum Electron. , 23 - 28
    8. 8)
      • M.J. Adams . Time dependent analysis of active and passive optical bistability in semiconductors. IEE Proc. Pt. J , 343 - 348
    9. 9)
      • A.J. Lowery . New inline wideband dyamic semiconductor laser amplifier model. IEE Proc. Pt. J. , 242 - 250
    10. 10)
      • T. Mukai , Y. Yamamoto . Gain, frequency bandwidth and saturation output power of AlGaAs DH laser amplifiers. IEEE J. Quantum Electron. , 1028 - 1034
    11. 11)
      • Y. Yamamoto . Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers. IEEE J. Quantum Electron. , 1047 - 1052
    12. 12)
      • Liddell, W.: 1986, PhD Thesis, University of Bath.
    13. 13)
      • E.O. Kane . Thomas-Fermi approach to impure semiconductor band structure. Phys. Rev. , 79 - 88
    14. 14)
      • Middlemast, I.: 1986, PhD Thesis, University of Bath.
    15. 15)
      • J.J. Tuma . (1979) , Engineering Mathematics Handbook.
    16. 16)
      • Pennington, P.N., Ormondroyd, R.F.: `The modulation response of active integrated-optic waveguides', Paper 33, Conf. Abstract, SIOE'89, March 1989, Cardiff, p. 20–21.
    17. 17)
      • S.J. Lowery . Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers. Int. J. Optoelectronics , 497 - 508
    18. 18)
      • A.J. Lowery . Pulse compression mechanism in semiconductor laser amplifiers. IEE Proc. Pt. J. , 141 - 146
    19. 19)
      • Ormondroyd, R.F., Pennington, P.N.: `Monolithic Active Integrated Optics', Colloqium Digest No. 1989/93, IEE Colloquium “Integrated Optics”, 1989, London, p. 1011–1016.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-j.1990.0004
Loading

Related content

content/journals/10.1049/ip-j.1990.0004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address