Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Role of lifetime and energy-bandgap narrowing in diffused-junction silicon solar cells

Role of lifetime and energy-bandgap narrowing in diffused-junction silicon solar cells

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings J (Optoelectronics) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The effects of bandgap narrowing, surface recombination and lifetime on the performance of n+p-diffused-junction silicon solar cells are analysed, and experimental results are given to show that the bulk recombination in the n+-diffused region plays an important role in limiting the open-circuit voltage of solar cells. The analysis shows that the surface effects are relatively unimportant in diffused-junction solar cells with surface doping concentration above 1020/cm3 because of the low lifetime due to phonon-assisted recombination in addition to Auger recombination in the heavily doped layer.The analysis also brings out the effects of bandgap-narrowing models and lifetime models on the estimated carrier-concentration distributions, short-circuit currents and open-circuit voltages of solar cells. The theoretical results are compared with the experimental data obtained on n+p solar cells having different n+-layer thicknesses and different surface concentrations, to demonstrate the tenability of the bandgapnarrowing and lifetime models used in the analysis.

References

    1. 1)
      • D. Redfield . Unified model of fundamental limitations on the performance of silicon solar cells. IEEE Trans. , 766 - 771
    2. 2)
      • F.A. Lindholm , C.T. Sah . Fundamental electronic mechanisms limiting the performance of solar cells. IEEE Trans. , 299 - 304
    3. 3)
      • K.N. Bhat , K. Sukulal . Boundary conditions on the minority carrier concentrations of graded p-n junctions. Appl. Phys. Lett. , 1118 - 1120
    4. 4)
      • J.G. Fossum , F.A. Lindholm , M.A. Shibib . The importance of surface recombination and energy-bandgap narrowing in p-n junction silicon solar cells. IEEE Trans. , 1294 - 1298
    5. 5)
      • Iles, P.A., Soclof, S.I.: `Efficiency of impurity doping concentration on solar cell output', Proceedings 11th IEEE Photovoltaic Specialists Conference, 1975, p. 19–24.
    6. 6)
      • A. Nussbaum , R.K. Willardson , A.C. Beer . (1981) Theory of semiconducting junctions, Semiconductors and Semimetals.
    7. 7)
      • D.J. Roulston , N.D. Arora , S.G. Chamberlain . Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+−p silicon diodes. IEEE Trans. , 284 - 291
    8. 8)
      • G.E. Possien , M.S. Adler , B.J. Baliga . Measurement of heavy doping parameters in silicon by electron beam induced current. IEEE Trans. , 983 - 990
    9. 9)
      • C.T. Sah , P.C.H. Chan , C.K. Wang , R.L.Y. Sah , K.A. Yamakawa , Ralph Lutwack . Effect of zinc impurity on silicon cell efficiency. IEEE Trans. , 304 - 313
    10. 10)
      • M. Wolf . Updating the limit efficiency of silicon solar cells. IEEE Trans. , 751 - 760
    11. 11)
      • Brandhorst, H.W.: `Silicon solar cell efficiency: practice and promise', Proceedings 9th IEEE Photovoltaic Specialists Conference, 1972, p. 37–43.
    12. 12)
      • P. Lauwers , J. van Meerbergen , P. Bulteel , R. Mertens , R. van Overstraeten . Influence of bandgap narrowing on the performance of silicon n-p solar cells. Solid-State Electron. , 747 - 752
    13. 13)
      • F.A. Lindholm , A. Neugroschel , C.T. Sah , M.P. Godlewski , H.W. Brandhorst . A methodology for experimentally based determination of gap shrinkage and effective lifetimes in the emitter and base of p-n junction solar cells and other p-n junction devices. IEEE Trans. , 402 - 410
    14. 14)
      • O. von Roos , P.T. Landsberg . Effect of recombination on the open circuit voltage of a silicon solar cell. J. Appl. Phys. , 4746 - 4751
    15. 15)
      • Fischer, H., Pschunder, W.: `Impact of material and junction properties on silicon solar cell efficiency', Proceedings 11th IEEE Photovoltaic Specialists Conference, 1975, p. 25–31.
    16. 16)
      • H.P.D. Lanyon . Physics of heavily doped n+-p junction solar cells. Sol. Cells , 289 - 311
    17. 17)
      • A.H. Marshak , C.M. van Vliet . Electrical currents and carrier density in degenerate materials with nonuniform band structure. Proc. IEEE , 148 - 164
    18. 18)
      • P.T. Landsberg , A. Neugroschell , F.A. Lindholm , C.T. Sah . A model for band-gap shrinkage in semiconductors with application to silicon. Phys. Status Solidi b , 255 - 266
    19. 19)
      • J. Lindmayer , J.F. Allison . Violet cell: An improved silicon solar cell. COMSAT Tech. Rev. , 1 - 22
    20. 20)
      • David Redfield . Heavy-doping effect in silicon: The role of Auger processes. Sol. Cells , 313 - 326
    21. 21)
      • A.L. Fahrenbruch , R.H. Bube . (1983) , Fundamentals of solar cells.
    22. 22)
      • M.A. Green . Limits on the open circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger-processes. IEEE Trans. , 671 - 678
    23. 23)
      • J.W. Slotboom , H.C. de Graff . Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron. , 857 - 862
    24. 24)
      • K. Sukulal , K.N. Bhat . Current-gain of narrow base transistors. Solid-State Electron. , 311 - 316
    25. 25)
      • A.H. Marshak , M.A. Shibib , J.G. Fossum , F.A. Lindholm . Rigid band analysis of heavily doped semiconductor devices. IEEE Trans. , 293 - 298
    26. 26)
      • A.W. Blakers , M.A. Green , E.M. Keller . Experimental bounds on band-gap narrowing set by high open circuit voltage silicon solar cells. J. Appl. Phys. , 591 - 599
    27. 27)
      • H.C. Lin . Depletion layer calculations of a double diffused junction. IEEE Trans. , 1839 - 1841
    28. 28)
      • M.A. Wolf , M. Wolf . I-V characteristics and performance of silicon solar cells between low and high-level injection: Part I. The modeling method. IEEE Trans. , 684 - 689
    29. 29)
      • M.A. Shibib , F.A. Lindholm , J.G. Fossum . Auger recombination in heavily doped shallow-emitter silicon p-n junction solar cells, diodes and transistors. IEEE Trans. , 1104 - 1106
    30. 30)
      • J.R. Houser , P.M. Dunbar . Performance limitation of silicon solar cells. IEEE Trans. , 305 - 321
    31. 31)
      • M.S. Tyagi , R. van Overstraeten . Minority carrier recombination in heavily-doped silicon. Solid-State Electron. , 577 - 597
    32. 32)
      • H.S. Bennet . Improved concepts for predicting the electrical behaviour of bipolar structures in silicon. IEEE Trans. , 920 - 927
    33. 33)
      • Lundstrom, M.S., Schwartz, R.J., Gray, J.L.: Proceedings 15th IEEE Photovoltaic Specialists Conference, 1981, p. 400–405.
    34. 34)
      • M.S. Adler , G.E. Possin . Achieving accuracy in transistor and thyristor modeling. IEEE Trans. , 1053 - 1059
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-j.1987.0042
Loading

Related content

content/journals/10.1049/ip-j.1987.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address