http://iet.metastore.ingenta.com
1887

Recognition of speaker-dependent continuous speech with KEAL

Recognition of speaker-dependent continuous speech with KEAL

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings I (Communications, Speech and Vision) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A description of the speaker-dependent continuous speech recognition system KEAL is given. An unknown utterance is recognised by means of the following procedures: acoustic analysis, phonetic segmentation and identification, word and sentence analysis. The combination of feature-based, speaker-independent coarse phonetic segmentation with speaker-dependent statistical classification techniques is one of the main design features of the acoustic-phonetic decoder. The lexical access component is essentially based on a statistical dynamic programming technique which aims at matching a phonemic lexical entry containing various phonological forms, against a phonetic lattice. Sentence recognition is achieved by use of a context-free grammar and a parsing algorithm derived from Earley's parser. A speaker adaptation module allows some of the system parameters to be adjusted by matching known utterances with their acoustical representation. The task to be performed, described by its vocabulary and its grammar, is given as a parameter of the system. Continuously spoken sentences extracted from a ‘pseudo-Logo’ language are analysed and results are presented.

References

    1. 1)
      • Bigorgne, D., Cozannet, A., Guyomard, M., Mercier, G., Miclet, L., Querre, M., Siroux, J.: `A versatile speaker-dependent continuous speech understanding system', ICASSP 88, 1988, New York, 1, p. 303–306.
    2. 2)
      • Bonneau, A., Rossi, M.: `Recognition of French vowels by expert system SERAC', Proceedings of 11th Int. Congress of Phonetic sciences, 1987, Tallin, USSR, 5, p. 282–285.
    3. 3)
      • Brietzmann, A., Ehrlich, U.: `The role of semantic processing in an automatic speech understanding system', Proceedings of COLING-86, 1986, Bonn, p. 596–598.
    4. 4)
      • W.G. Chaplin , V.S. Levadi , J.T. Tou . (1967) A generalization of the linear threshold decision algorithm to multiple classes, Computer and information and Sciences.
    5. 5)
      • Cozannet, A.: `ALOEMDA, analyseur linguistique pour l'oral et l'écrit', Proceedings of 6th RFIA Conference, November 1987, Antibes France, p. 381–390.
    6. 6)
      • J. Earley . An efficient context-free parsing algorithm. Comm. ACM , 2 , 94 - 102
    7. 7)
      • W.A. Lea . (1980) , Trends in automatic speech recognition.
    8. 8)
      • L. Mathan . (1988) , Optimisation du decodeur lexical KAPHRADE de KEAL.
    9. 9)
      • Mercier, G., Gerard, M.: `L'apprentissage des paramètres de reconnaissance phonetique dans un système de reconnaissance de la parole continue', Proc. du congrès de reconnaissance des formes et d'intelligence artificielle, Septembre 1981, Nancy, p. 641–652.
    10. 10)
      • Mercier, G.: `Acoustic-phonetic decoding and adaptation in continuous speech recognition', Proceedings of NATO Advanced Study Institute on Automatic speech analysis and recognition, 1981, D. Reidel, Bonas , p. 69–99.
    11. 11)
      • Mercier, G., le Guennec, L., Laface, P.: `Recognition of Italian numbers and connected digits', P1015, ESPRIT project, 1987.
    12. 12)
      • Miclet, L., Mercier, G.: `Evaluation of the acoustic decoder of the “KEAL” speech recognition system', Proceedings of 9th International Conference on Pattern Recognition, 1988, Rome, Italy.
    13. 13)
      • Poessio, M., Rullent, C.: `Modified case frame parsing for speech understanding systems', Proceedings of IJCAI 87, 1987, Milan, p. 6622–6625.
    14. 14)
      • P. Quinton . (1980) , Contribution à la reconnaissance de la parole: utilisation des méthodes heuristiques pour la reconnaissance des phrases.
    15. 15)
      • H. Sakoe , S. Chiba . Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. , 43 - 49
    16. 16)
      • J. Siroux , D. Gillet . A system for man-machine communication using speech. Speech Commun. , 4 , 289 - 315
    17. 17)
      • Sondhi, M.M., Levinson, S.E.: `Computing relative redundancy to measure grammatical constraints in speech recognition tasks', Proceedings of IEEE ICASSP, 1978, Tulsa, USA, p. 409–412.
    18. 18)
      • J. Vaissiere , H. Niemann . , The use of prosodic parameters in automatic speech recognition.
    19. 19)
      • Vives, R.: `Vérification des hypothèses proposées par un analyseur lexical d'un système de reconnaissance automatique de la parole', Proceedings of 4th FASE Symposum, 1985, Venise , p. 277–280.
    20. 20)
      • T. Winograd . (1983) , Language as a cognitive process. Part 1: Syntax.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-i-2.1989.0019
Loading

Related content

content/journals/10.1049/ip-i-2.1989.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address