http://iet.metastore.ingenta.com
1887

Experimental 1 Mbit DRAM using power reduction techniques

Experimental 1 Mbit DRAM using power reduction techniques

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings I (Solid-State and Electron Devices) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One of the serious problems which must be overcome in realising a 1 Mbit DRAM is high-power dissipation associated with data-line charging and discharging. To solve this problem, this paper proposes the following three techniques, which permit power reduction by about one-quarter: a multidivided data-line structure, 512 refresh cycles and an on-chip voltage limiter circuit. These techniques are proven to be useful through the design and evaluation of an experimental n-MOS 1 Mbit DRAM with a 46 mm2 chip size. The chip fabricated provides a 295 mW operating power at a 260 ns cycle time despite the fast access time of 90 ns. The possibility of further power reduction is also described.

References

    1. 1)
      • K. Itoh , R. Hori , J. Etoh , S. Asai , N. Hashimoto , K. Yagi , H. Sunami . An experimental 1 Mb DRAM with on-chip voltage limiter. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 282 - 283
    2. 2)
      • J. Yamada , T. Mano , J. Inoue , S. Nakajima , T. Matsuda . A submicron VLSI memory with a 4 b-at-a-time built-in ECC circuit. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 104 - 105
    3. 3)
      • S. Suzuki , M. Nakao , T. Takeshima , M. Yoshida , M. Kikuchi , K. Nakamura . A 128 Kword × 8 b DRAM. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 106 - 107
    4. 4)
      • M. Taguchi , S. Audo , S. Hijiya , T. Nakamura , S. Economo , T. Yabu . A capacitance-coupled bit-line cell for Mb level DRAMs. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 100 - 101
    5. 5)
      • Koyanagi, M., Sunami, H., Hashimoto, N.: `Nobel high density, stacked capacitor MOS RAM', Proc. 10th Conf. Solid-State Devices, 1978, Tokyo, p. 35–42, 1979 supplement 18–1.
    6. 6)
      • T. Morie , K. Minegishi , M. Kimizuka , S. Nakajima . (1982) , An application of deep moat to capacitor.
    7. 7)
      • H. Sunami , T. Kure , N. Hashimoto , K. Itoh , T. Toyabe , S. Asai . A corrugated capacitor cell (CCC) for mega bit MOS memories. IEEE Int. Electron Devices Meet. Tech. Dig. , 806 - 808
    8. 8)
      • R. Hori , K. Itoh , J. Etoh , S. Asai , N. Hashimoto , K. Yagi , H. Sunami . , An experimental 1 Mb DRAM based on high S/N design.
    9. 9)
      • T.H. Ning , P.W. Cook , R.H. Dennard , C.M. Osburn , S.E. Schuster , H.N. Yu . 1μm MOSFET VLSI technology; Part 4—hot electron design constraints. IEEE J. Solid-State Circuits , 268 - 274
    10. 10)
      • T. Mano , H. Yamada , J. Inoue , S. Nakajima . Submicron VLSI memory circuits. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 234 - 235
    11. 11)
      • S. Ogura , P. Tsang , W. Walker , D. Critchlow , J. Shepard . Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE Trans. , 1359 - 1367
    12. 12)
      • K. Itoh , R. Hori , H. Masuda , Y. Kamigaki , H. Kawamoto , H. Katto . A single 5 V 64 K dynamic RAM. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 228 - 229
    13. 13)
      • K. Itoh , H. Sunami . High-density one-device dynamic MOS memory cells. IEE Proc. I, Solid-State & Electron Dev. , 3 , 127 - 135
    14. 14)
      • S. Eaton , D. Wooten , W. Slemmer , J. Brady . A 100 ns 64 K dynamic RAM using redundancy techniques. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 84 - 85
    15. 15)
      • H. Kawamoto , Y. Yamaguchi , S. Shimizu , K. Ohishi , N. Tanimura , T. Yasui . A 288 Kb CMOS pseudo SRAM. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 276 - 277
    16. 16)
      • R.I. Kung , A.M. Mohsen , J.D. Schutz , P.D. Madland , C.C. Webb , E.R. Hamdy , C.J. Simonsen , R.T. Guo , K.K. Yu , S. Chou . A sub 100 ns 256 K DRAM in CMOS 111 technology. IEEE Int. Solid-State Circuits Conf. Tech. Dig. , 278 - 279
    17. 17)
      • Y. Wada , H. Sunami , N. Yamamoto , Y. Kawamoto , T. Mizutani , K. Yagi , Y. Honma , N. Hashimoto , S. Asai . A 1.3 μm N-MOS VLSI technology. IEEE Int. Electron Devices Meet. Tech. Dig. , 323 - 326
    18. 18)
      • R.L.M. Dang , N. Shigyo . Coupling capacitances for two dimensional wires. IEEE Electron Device Lett. , 196 - 197
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-i-1.1985.0006
Loading

Related content

content/journals/10.1049/ip-i-1.1985.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address