http://iet.metastore.ingenta.com
1887

Electron - beam annealing of B-, P-, As-, Sb-, and Ga-implanted silicon by multiple-scan method

Electron - beam annealing of B-, P-, As-, Sb-, and Ga-implanted silicon by multiple-scan method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings I (Solid-State and Electron Devices) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Data are presented on the sheet resistance of ion-implanted silicon following isothermal electron-beam annealing by the multiple-scan method. Anneals were performed on implanted 5 mm square chips for times around 5 s, with anneal temperatures up to 1350°C. Implants of As, P, B, Sb and Ga were annealed, ranging in doses from 1013 cm−2 to 1016 cm−2 in both (100) and (111) orientation silicon, and the sheet resistance was measured with a four-point probe. The measurements are presented as a plot of sheet resistance against electron-beam power, for a given dopant and anneal time, and the corresponding temperatures are also shown. Above a threshold temperature region of 750°C to 950°C near-full electrical activation is obtained, except in cases where the doping level approaches the solid solubility limit, or for certain high-dose boron implants. Slightly lower sheet resistances are obtained for implants in (100) material than (111) material, and at temperatures exceeding 1100°C diffusion effects are expected to be significant. The activation of ion implants without significant redistribution of dopant during annealing can be used to improve the performance of ion-implanted devices.

References

    1. 1)
      • C. Hill , J.F. Gibson , L.D. Hess , T.W. Sigmon . (1981) Beam processing in silicon device technology, Laser and electron beam solid interactions and material processing.
    2. 2)
      • Ahmed, H., McMahon, R.A.: `Applications of electron beams to semiconductor device fabrication', Institute of Physics Conference Series 60, 1981, p. 421–430, Section 9.
    3. 3)
      • H. Ahmed , R.A. McMahon . Electron beam annealing of ion-implanted silicon. Electron. Lett. , 45 - 47
    4. 4)
      • A. Lietoila , R.B. Gold , T.W. Sigmon , P.D. Scovell , J.M. Young . Metastable As-concentrations in Si achieved by ion implantation and rapid thermal annealing. J. Appl. Phys. , 230 - 232
    5. 5)
      • B-Y. Tsaur , J.P. Donnelly , J.C.C. Fan , M.W. Geis . Transient annealing of arsenic-implanted silicon using a graphite strip heater. Appl Phys. Lett. , 93 - 95
    6. 6)
      • H.J. Smith , E. Ligeon , A. Bontemps . Scanning electron beam annealing of arsenic-implanted silicon. Appl Phys. Lett. , 1036 - 1037
    7. 7)
      • T.O. Yep , R.T. Fulks , R.A. Powell . Scanning electron beam annealing of boron implanted diodes. Appl Phys. Lett. , 162 - 164
    8. 8)
      • Smith, B.J., Stephen, J.: `Handbook of ion-implantation data', R9369, AERE report, 1972.
    9. 9)
      • F.A. Trumbore . Solid solubilities of impurity elements in Ge and Si. Bell Syst. Tech. J. , 205 - 234
    10. 10)
      • B.J. Smith . (1977) , Ion implantation range data for silicon and germanium device technologies.
    11. 11)
      • N.J. Shah , R.A. McMahon , J.G.S. Williams , H. Ahmed , J.F. Gibbons , L.D. Hess , T.W. Sigmon . (1981) , Multiple scan e-beam method applied to a range of semiconducting materials.
    12. 12)
      • R.A. McMahon , H. Ahmed , A.G. Cullis . Comparative structural and electrical characterization of scanning-electron and pulsed-laser annealed silicon. Appl. Phys. Lett. , 1016 - 1018
    13. 13)
      • R.A. McMahon , H. Ahmed , J.D. Speight , R.M. Dobson . Characterisation of multiple-scan electron beam annealing method. Electron. Lett. , 8 , 295 - 297
    14. 14)
      • R.A. McMahon , H. Ahmed , J.D. Speight , R.M. Dobson . Scanning electron beam processing of devices. Proc. Electrochem. Soc , 130 - 140
    15. 15)
      • J.D. Speight , A.E. Glaccum , J. Machin , R.A. McMahon , J.F. Gibbons , L.D. Hess , T.W. Sigmon . (1981) Scanning e-beam annealing of MOS devices, Laser and electron beam solid interactions.
    16. 16)
      • L. Csepregi , E.F. Kennedy , J.J. Gallagher , J.N. Mayer , T.W. Sigmon . Reordering of amorphous layers of Si implanted with 31 P, 75 As and “B” ions. J. Appl. Phys. , 4234 - 4240
    17. 17)
      • R.L. Seligher , J.W. Ward , V. Wang , R.L. Kubena . A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. , 310 - 312
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-i-1.1982.0023
Loading

Related content

content/journals/10.1049/ip-i-1.1982.0023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address