Current mechanism of tunnel m.i.s. solar cells

Access Full Text

Current mechanism of tunnel m.i.s. solar cells

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings I (Solid-State and Electron Devices) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dark current/voltage characteristics have been examined as a function of temperature for two structures of A1-pSi m.i.s. solar cells. The solar cells have been prepared with interfacial oxide thickness ranging from 10 Å to 20 Å. The results show that the diode saturation current Jo for all oxide thicknesses behave as a majority-carrier current, highly dependent on the effective metal-to-semiconductor barrier height øms and the oxide-tunnel exponent X1/2δ. From the illuminated current/voltage characteristics the sum of øms and (KT/q)X1/2δ is found to be in the range of 730–1025 mV, increasing with increasing oxide thicknessand acceptor concentration.

Inspec keywords: silicon compounds; aluminium; elemental semiconductors; solar cells; metal-insulator-semiconductor devices; silicon

Other keywords: Al-SiO2-p-Si MIS solar cells; metal semiconductor barrier height; Schottky barrier devices; diode saturation current; dark current voltage characteristics; majority carrier current; illuminated current voltage characteristics; acceptor concentration; interfacial oxide thickness

Subjects: Surface double layers, Schottky barriers, and work functions; Solar cells and arrays; Electrical properties of metal-insulator-semiconductor structures; Metal-insulator-semiconductor structures; Photoelectric conversion; solar cells and arrays

References

    1. 1)
      • E.J. Charlson , J.C. Lien . An Alp-silicon MOS photovoltaic cell. J. Appl. Phys. , 3982 - 3987
    2. 2)
      • A.S. Grove . (1967) , Physics and technology of semiconductor devices.
    3. 3)
      • O.M. Nielsen . Effects of minority-carrier storage at the interface states upon the fill factor of m.i.s. solar cells. IEE J.Solid-State & Electron Devices , 2 , 51 - 55
    4. 4)
      • R. Singh , J. Shewchun . Tunnel MIS solar cells. J. Vac. Sci. & Technol. , 89 - 91
    5. 5)
      • D.R. Lillington , W.G. Townsend . Effects of interfacial oxide layers on the performance of silicon Schottky-barrier solar cells. Appl. Phys. Lett. , 97 - 98
    6. 6)
      • J. Shewchun , R. Singh , D. Burk , F. Scholz . Temperature dependence of the current-voltage characteristics of silicon MIS solar cells. Appl. Phys. Lett. , 416 - 418
    7. 7)
      • J. Shewchun , R. Singh , M.A. Green . Theory of metal-insulator-semiconductor solar cells. J. Appl. Phys. , 765 - 770
    8. 8)
      • S.M. Sze . (1981) , Physics of semiconductor devices.
    9. 9)
      • H.C. Card . Potential barriers to electron tunneling in ultra-thin films of SiO2. Solid-State Commun. , 1011 - 1014
    10. 10)
      • G.C. Salter , R.E. Thomas . Silicon solar cells using natural inversion layers found in thermally-oxidized p-silicon. Solid-State Electron. , 95 - 104
    11. 11)
      • R. Rajkanan , W.A. Anderson . Current conduction in Cr-MIS solar cells on single-crystal p-silicon. Appl. Phys. Lett. , 421 - 423
    12. 12)
      • M.A. Green , R.B. Godfrey . MIS solar cell – general theory and new experimental results for silicon. Appl. Phys. Lett. , 610 - 612
    13. 13)
      • O.M. Nielsen . Required minimum value of barrier height in minority-carrier m.i.s. solar cells. IEE Proc. I, Solid-State & Electron Devices , 3 , 105 - 108
    14. 14)
      • S. Kar . On the role of interface states in MOS solar cells. J. Appl. Phys. , 5278 - 5283
    15. 15)
      • J.C. Pompon , P. Siffert . Open-circuit voltage of of MIS silicon solar cells. J. Appl. Phys. , 3248 - 3251
    16. 16)
      • N.G. Tarr , D.L. Pulfrey . New experimental evidence for minority-carrier MIS diodes. Appl. Phys. Lett. , 295 - 297
    17. 17)
      • R.J. Stirn , Y.C.M. Yeh . A 15% efficient antireflectioncoated metal-oxide-semiconductor solar cell. Appl. Phys. Lett. , 95 - 98
    18. 18)
      • O.M. Nielsen . Effects of fixed charges in the oxide of thermally oxidised m.i.s. solar cells. IEE J. Solid-State & Electron Devices , 5 , 167 - 168
    19. 19)
      • P. Van Halen , R.P. Mertens , R.J. Van Overstraeten , R.E. Thomas , J. van Meerbergen . New TiOx-MIS and SiO2-MIS Silicon Solar cells. IEEE Trans. , 507 - 511
    20. 20)
      • D.L. Pulfrey , R.F. McQuat . Schottky-barrier solar cell calculations. Appl. Phys. Lett. , 167 - 169
    21. 21)
      • T.H. Ning . Electron trapping in SiO2 due to electron-beam deposition of aluminium. J. Appl. Phys. , 4077 - 4082
    22. 22)
      • W.A. Anderson , A.E. Delahoy , R.A. Milan . An 8% efficient layered Schottky-barrier solar cell. J. Appl. Phys. , 3913 - 3915
    23. 23)
      • H.C. Card . Photovoltaic properties of MIS-Schottky barriers. Solid-State Electron. , 971 - 976
    24. 24)
      • M.A. Green . Enchancement of Schottky solar cell efficiency above its semiempirical limit. Appl. Phys. Lett. , 287 - 288
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-i-1.1980.0059
Loading

Related content

content/journals/10.1049/ip-i-1.1980.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Erratum: Current mechanism of tunnel m.i.s. solar cells