http://iet.metastore.ingenta.com
1887

Current mechanism of tunnel m.i.s. solar cells

Current mechanism of tunnel m.i.s. solar cells

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings I (Solid-State and Electron Devices) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dark current/voltage characteristics have been examined as a function of temperature for two structures of A1-pSi m.i.s. solar cells. The solar cells have been prepared with interfacial oxide thickness ranging from 10 Å to 20 Å. The results show that the diode saturation current Jo for all oxide thicknesses behave as a majority-carrier current, highly dependent on the effective metal-to-semiconductor barrier height øms and the oxide-tunnel exponent X1/2δ. From the illuminated current/voltage characteristics the sum of øms and (KT/q)X1/2δ is found to be in the range of 730–1025 mV, increasing with increasing oxide thicknessand acceptor concentration.

References

    1. 1)
      • D.L. Pulfrey , R.F. McQuat . Schottky-barrier solar cell calculations. Appl. Phys. Lett. , 167 - 169
    2. 2)
      • W.A. Anderson , A.E. Delahoy , R.A. Milan . An 8% efficient layered Schottky-barrier solar cell. J. Appl. Phys. , 3913 - 3915
    3. 3)
      • M.A. Green . Enchancement of Schottky solar cell efficiency above its semiempirical limit. Appl. Phys. Lett. , 287 - 288
    4. 4)
      • R.J. Stirn , Y.C.M. Yeh . A 15% efficient antireflectioncoated metal-oxide-semiconductor solar cell. Appl. Phys. Lett. , 95 - 98
    5. 5)
      • E.J. Charlson , J.C. Lien . An Alp-silicon MOS photovoltaic cell. J. Appl. Phys. , 3982 - 3987
    6. 6)
      • D.R. Lillington , W.G. Townsend . Effects of interfacial oxide layers on the performance of silicon Schottky-barrier solar cells. Appl. Phys. Lett. , 97 - 98
    7. 7)
      • H.C. Card . Photovoltaic properties of MIS-Schottky barriers. Solid-State Electron. , 971 - 976
    8. 8)
      • J.C. Pompon , P. Siffert . Open-circuit voltage of of MIS silicon solar cells. J. Appl. Phys. , 3248 - 3251
    9. 9)
      • M.A. Green , R.B. Godfrey . MIS solar cell – general theory and new experimental results for silicon. Appl. Phys. Lett. , 610 - 612
    10. 10)
      • J. Shewchun , R. Singh , M.A. Green . Theory of metal-insulator-semiconductor solar cells. J. Appl. Phys. , 765 - 770
    11. 11)
      • R. Singh , J. Shewchun . Tunnel MIS solar cells. J. Vac. Sci. & Technol. , 89 - 91
    12. 12)
      • R. Rajkanan , W.A. Anderson . Current conduction in Cr-MIS solar cells on single-crystal p-silicon. Appl. Phys. Lett. , 421 - 423
    13. 13)
      • N.G. Tarr , D.L. Pulfrey . New experimental evidence for minority-carrier MIS diodes. Appl. Phys. Lett. , 295 - 297
    14. 14)
      • J. Shewchun , R. Singh , D. Burk , F. Scholz . Temperature dependence of the current-voltage characteristics of silicon MIS solar cells. Appl. Phys. Lett. , 416 - 418
    15. 15)
      • O.M. Nielsen . Required minimum value of barrier height in minority-carrier m.i.s. solar cells. IEE Proc. I, Solid-State & Electron Devices , 3 , 105 - 108
    16. 16)
      • A.S. Grove . (1967) , Physics and technology of semiconductor devices.
    17. 17)
      • O.M. Nielsen . Effects of minority-carrier storage at the interface states upon the fill factor of m.i.s. solar cells. IEE J.Solid-State & Electron Devices , 2 , 51 - 55
    18. 18)
      • S. Kar . On the role of interface states in MOS solar cells. J. Appl. Phys. , 5278 - 5283
    19. 19)
      • S.M. Sze . (1981) , Physics of semiconductor devices.
    20. 20)
      • O.M. Nielsen . Effects of fixed charges in the oxide of thermally oxidised m.i.s. solar cells. IEE J. Solid-State & Electron Devices , 5 , 167 - 168
    21. 21)
      • T.H. Ning . Electron trapping in SiO2 due to electron-beam deposition of aluminium. J. Appl. Phys. , 4077 - 4082
    22. 22)
      • H.C. Card . Potential barriers to electron tunneling in ultra-thin films of SiO2. Solid-State Commun. , 1011 - 1014
    23. 23)
      • P. Van Halen , R.P. Mertens , R.J. Van Overstraeten , R.E. Thomas , J. van Meerbergen . New TiOx-MIS and SiO2-MIS Silicon Solar cells. IEEE Trans. , 507 - 511
    24. 24)
      • G.C. Salter , R.E. Thomas . Silicon solar cells using natural inversion layers found in thermally-oxidized p-silicon. Solid-State Electron. , 95 - 104
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-i-1.1980.0059
Loading

Related content

content/journals/10.1049/ip-i-1.1980.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Erratum: Current mechanism of tunnel m.i.s. solar cells
This is a required field
Please enter a valid email address