Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Electron and hole photocurrent effects on impatt oscillators

Electron and hole photocurrent effects on impatt oscillators

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings I (Solid-State and Electron Devices) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Experimental and theoretical results are presented to show the difference between electron- and hole-initiated avalanches on the microwave properties on impatt oscillators under optical illumination. This difference, arising from unequal electron- and hole-ionisation rates, is demonstrated with X-band Si impatt structures suitable for microwave-optical interactions. A large signal impatt model is extended to incorporate the difference between hole and electron photocurrent, with the intrinsic response time of the avalanche depending on photocurrent composition. The model gives good agreement with experimental results of the power dependence upon photocurrent, although additional power saturation mechanisms need to be considered at higher power levels.

References

    1. 1)
      • J.R. Forrest , A.J. Seeds . Analysis of the optically controlled impatt (opcad) oscillator. IEE J. Solid-State andElectron Devices , 161 - 169
    2. 2)
      • R.J. Gutmann , J.M. Borrego . Enhanced leakage current pulse induced changes in impatt oscillators. IEE J. Microwave, Opt. & Acoust. , 75 - 80
    3. 3)
      • I.S. Graves , D.E. Lewis . Resonant-cap structures for impatt diodes. Electron. Lett. , 98 - 99
    4. 4)
      • Kiehl, R.A.: `Optical control of impatt oscillator dynamics', 1978 IEDM conference digest, 1978, p. 286–289.
    5. 5)
      • R.L. Kuvas . Noise in impatt diodes: intrinsic properties. IEEE Trans. , 220 - 2330
    6. 6)
      • A. Schweighart , H.P. Vyas , J.M. Borrego , R.J. Gutmann . Avalanche diode structure suitable for micro wave-optical interactions. Solid-State Electron. , 1119 - 1121
    7. 7)
      • J.R. Forrest , A.J. Seeds . Optical injection locking of impatt oscillators. Electron. Lett. , 626 - 627
    8. 8)
      • C.A. Lee , R.L. Batdorf , W. Wiegmann , G. Kaminsky . Time dependence of avalanche process in silicon. J. Appl.Phys. , 2787 - 2795
    9. 9)
      • H.P. Vyas , R.J. Gutmann , J.M. Borrego . Leakage current enhancement in impatt oscillators by photoexcitation. Electron. Lett. , 189 - 190
    10. 10)
      • S.M. Sze . (1981) , Physics of semiconductor devices.
    11. 11)
      • H.W. Yen . Switching of GaAs impatt diode oscillator by optical illumination. Appl. Phys. Lett. , 120 - 122
    12. 12)
      • T. Misawa . Minority carrier storage and oscillation efficiency in Read diodes. Solid-State Electron. , 1369 - 1374
    13. 13)
      • H.P. Vyas , R.J. Gutmann , J.M. Borrego . The effect of hole versus electron photocurrent on microwave-opticalinteractions in impatt oscillators. IEEE Trans. , 232 - 234
    14. 14)
      • P.E. Cottrell , J.M. Borrego , R.J. Gutmann . Impatt oscillator with enhanced leakage current. Solid-State Electron. , 1 - 12
    15. 15)
      • R. van Overstraeten , H. Deman . Measurement of the ionization rates in diffused silicon p-n junctions. Solid-State Electron. , 583 - 591
    16. 16)
      • T. Misawa , R.K. Willardson , A.C. Beer . (1972) Impatt diodes, Semiconductor and semimetals.
    17. 17)
      • M.H. Woods , S. Mark , M. Lampert . Use of a schottky barrier to measure impact ionization coefficient in semiconductors. Solid-State Electron. , 381 - 394
    18. 18)
      • J.J. Goedbloed . Determination of the intrinsic response time of semiconductor avalanches from microwave measurements. Solid-State Electron. , 635 - 643
    19. 19)
      • Vyas, H.P.: `Electron and hole photocurrent effects in impatt oscillators', 1979, Ph.D. Thesis, Rensselaer Polytechnic Institute.
    20. 20)
      • J.R. Hauser , P.M. Dunbar . Performance limitations of silicon solar cells. IEEE Trans. , 305 - 321
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-i-1.1980.0024
Loading

Related content

content/journals/10.1049/ip-i-1.1980.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address