Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Logic design based on negative differential resistance characteristics of quantum electronic devices

Logic design based on negative differential resistance characteristics of quantum electronic devices

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings G (Circuits, Devices and Systems) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

New quantum electronic devices such as resonant tunnelling diodes and transistors have negative differential resistance characteristics that can be exploited to design novel high-speed circuits. The high intrinsic switching speed of these devices, combined with the novel circuit structures used to implement standard logic functions, leads to ultrafast computing circuits. The new circuit structures presented here provide extremely compact implementations of functions such as carry generation and addition. The most significant impact of these circuits on the field of logic design is the introduction of a totally new set of relative costs of various basic gates; reevaluation of the logic in the light of these new cost functions leads to ultrafast and compact designs.

References

    1. 1)
      • S. Goswami , S.-C. Hong , D. Biswas , P.K. Bhattacharya , J. Singh , W.-Q. Li . Low-power excitonbased hetero-junction bipolar transistors for thresholding logic applications. IEEE J. Quantum Electron. , 3 , 760 - 768
    2. 2)
      • W.F. Chow . (1964) , Principles of tunnel diode circuits.
    3. 3)
      • V. Milutinovic . (1990) , Microprocessor design for GaAs technology.
    4. 4)
      • G.I. Haddad , R.K. Mains , U.K. Reddy , J.R. East . A proposed narrow band-gap base transistor structure. Superlattices Microstruct. , 3 , 437 - 441
    5. 5)
      • G.A. Katopis . Delta-i noise specification for a high-performance computing machine. Proc. IEEE , 9 , 1405 - 1415
    6. 6)
      • A. Sellai , M.S. Raven , D.P. Steenson , J.M. Chamberlain , M. Henini , O.M. Hughes . Double-barrier resonant tunneling diode three-state logic. Electron. Lett. , 1 , 61 - 62
    7. 7)
      • S. Luryi , P.M. Mensz , M.R. Pinto , P. Garbinski , A.Y. Cho , D.L. Sivco . Charge injection logic. Appl. Phys. Lett. , 17 , 1787 - 1789
    8. 8)
      • S. Mohan , P. Mazumder , R.K. Mains , J.P. Sun , G.I. Haddad . Ultrafast pipelined adders using RTTs. Electron. Lett. , 10 , 830 - 831
    9. 9)
      • G.I. Haddad , U.K. Reddy , J.P. Sun , R.K. Mains . The bound-state resonant tunneling transistor (BSRTT): fabrication, D.C. I–V characteristics and high-frequency properties. Superlattices Microstruct. , 4
    10. 10)
      • L.L. Chang , L. Esaki , R. Tsu . Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. , 593 - 595
    11. 11)
      • L.O. Chua , P.M. Lin . (1975) , Computer-aided analysis of electronic circuits.
    12. 12)
      • K. Imamura . Full adder uses RHETs. J. Electron. Eng. , 299 , 76 - 80
    13. 13)
      • Yokoyama, N., Mori, T., Futatsugi, T., Muto, S., Ohnishi, T., Imamura, K.: `Resonant tunneling transistors', Proceedings of the International Workshop on Future Electron Devices, February 1987.
    14. 14)
      • S. Sen , F. Capasso , A.Y. Cho , D. Sivco . Resonant tunneling device with multiple negative differential resistance: digital and signal processing applications with reduced circuit complexity. IEEE Trans. Electron Devices , 10 , 2185 - 2191
    15. 15)
      • Mehdi, I.: `Device applications of double barrier resonant tunneling structures', 1990, PhD thesis, The University of Michigan, Ann Arbor.
    16. 16)
      • F. Capasso , K. Mohammed , A.Y. Cho . Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J Quantum Electron. , 9 , 1853 - 1869
    17. 17)
      • T.K. Woodward , T.C. McGill , R.D. Burnham . Experimental realization of a resonant tunneling transistor. Appl. Phys. Lett. , 8 , 451 - 453
    18. 18)
      • M.A. Reed , W.R. Frensley , R.J. Matyi , J.N. Randall , A.C. Seabaugh . Realization of a three-terminal resonant tunneling device: the bipolar quantum resonant tunneling transistor. Appl. Phys. Lett. , 11 , 1034 - 1036
    19. 19)
      • R.K. Mains , J.P. Sun , G.I. Haddad . Observation of intrinsic bistability in resonant tunneling diode modeling. Appl. Phys. Lett. , 4 , 371 - 373
    20. 20)
      • U.K. Reddy , G.I. Haddad , I. Mehdi , R.K. Mains . (1989) Fabrication and room temperature operation of a resonant tunneling transistor with a pseudomorphic InGaAs base, Nanostructure Physics and Fabrication.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-g-2.1993.0063
Loading

Related content

content/journals/10.1049/ip-g-2.1993.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address