Distributed parameter analysis of dark IV characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor

Access Full Text

Distributed parameter analysis of dark IV characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings G (Circuits, Devices and Systems) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The present investigation deals with the distributed parameter analysis of the p–n junction solar cell in the current-induced case at low level injection. The theory, for the first time, takes into account the metal–semiconductor contact resistance, along with the base bulk resistance and the diffused layer shear resistance. The transcendentally nonlinear differential equations for the emitter layer current and voltage have been solved analytically. Additionally, expressions for the I–V characteristic and equivalent ‘lumped’ series resistance have been established. Such physical parameters are very useful in the optimisation of the contact finger width and separation. Inclusion of the contact resistance, even for very small values, corresponds to the nonuniform carrier generation within the metallic grid. Therefore, the results are affected both qualitatively and quantitatively. The most important effect has been calculated in the I–V characteristics resulting from an additional contribution to the series resistance. Analysis reveals that the series resistance and the diode quality factor vary with applied current.

Inspec keywords: semiconductor-metal boundaries; semiconductor device models; equivalent circuits; solar cells; contact resistance

Other keywords: emitter layer voltage; p-n junction; diode quality factor; current-induced case; grid pattern metallisation; emitter layer current; solar cell; low level injection; dark I-V characteristics; base bulk resistance; diffused layer shear resistance; distributed parameter analysis; metal-semiconductor contact resistance; equivalent lumped series resistance; nonuniform carrier generation; nonlinear differential equations

Subjects: Solar cells and arrays; Photoelectric conversion; solar cells and arrays; Semiconductor device modelling, equivalent circuits, design and testing

References

    1. 1)
      • Bobbio, S., Califano, F.B., Ciccarone, E.: `Nonlinear analysis of solar cell series resistance', Proceedings of the International Conference on Photovoltaic Solar Energy, 1977, Luxembourg, p. 1006.
    2. 2)
      • Boucher, J., Lescure, H.: `Determination of series resistance of a solar cell by dynamic method', Proc. E.C. 1st Photovoltaic Solar Energy Conference, 1977, Luxembourg, p. 1044.
    3. 3)
      • D. Fuchs , H. Sigmind . Analysis of the current-voltage characteristics of solar cells. Solid State Electron. , 791 - 795
    4. 4)
      • E.H. Rhoderick , R.H. Williams . (1988) , Metal-semiconductor contacts.
    5. 5)
      • P.J. Chen , S.C. Rao , A. Neugroschel , F.A. Lindholm . Experimental determination of series resistance of a p–n junction diodes and solar cells. IEEE Trans. Electron. Devices , 386 - 388
    6. 6)
      • R. Bellman . (1970) , Methods of nonlinear analysis.
    7. 7)
      • K. Rajkhanan , J. Schewchun . A better approach to the evaluation of the series resistance of solar cell. Solid-State Electron. , 193 - 197
    8. 8)
      • A.R. Moore . (1979) RCA Rev..
    9. 9)
      • S.E. Seirhum , W.M. Loh , R.M. Swanson , K.C. Sarasvat . Current crowding effects and determination of specific contact resistivity from contact end resistance (CER) measurement. IEEE Electron. Devices Lett. , 639 - 641
    10. 10)
      • A. Vishnoi , R. Gopal , R. Dwivedi , S.K. Srivastava . Studies of surface voltage and current transients in solar cells for accurate evaluation of minority carrier lifetime. Solid-State Electron. , 17 - 24
    11. 11)
      • H. Fischer , R. Greth . Electrochemically passivated contacts for silicon solar cells. IEEE Trans. Electron. Devices , 459 - 464
    12. 12)
      • Wolf, M., Rauschenbach, M.: `Series resistance effects on solar cell measurements', Advanced Energy Conference, 1963, 3, p. 455–479.
    13. 13)
      • S.R. Dhariwal , S. Mittal , R.K. Mathur . Theory for voltage dependent series resistance in silicon solar cells. Solid-State Electron. , 263 - 273
    14. 14)
      • Castle, J.A.: `Design criteria for high efficiency silicon solar cell with concentrations', IEEE Photovoltaic Specialists Conf. Rec., 1976, Baton Rouge, LA, p. 751–759.
    15. 15)
      • H.H. Berger . Models for contact to planar devices. Solid-State Electron.
    16. 16)
      • Fang, R.C., Hauser, J.R.: `A two dimensional analysis of sheet resistivity and contact resistance in solar cells', IEEE 13th Photovoltaic Specialists Conf. Rec., 1978, p. 1306.
    17. 17)
      • Iles, P.A.: `A survey of grid technology', IEEE 16th Photovoltaic Specialists Conf. Rec., 1982, San Diego, CA, p. 340.
    18. 18)
      • R.J. Chaffin , G.C. Osbourn . Measurement of concentrated solar cell series resistance by false testing. Appl. Phys. Lett. , 637 - 639
    19. 19)
      • K.NG. Knok . Novel technique to measure the contact resistance of MOSFET. IEEE Trans. Electron. Devices
    20. 20)
      • A. Vishnoi , R. Gopal , R. Dwivedi , S.K. Srivastava . Combined effect of nonuniform illumination and surface resistance on the performance of solar cell. Int. J. Electron. , 755 - 774
    21. 21)
      • N.C. Wyeth . Sheet resistance component of series resistance in a solar cell as a function of grid geometry. Solid-State Electron. , 629 - 634
    22. 22)
      • A. de Vos , P. de Visschrer . Diagnosis of a large series resistance in solar cells. Solar Cells , 69 - 80
    23. 23)
      • J. Granlund . Resistance associated with FET gate metallization. IEEE Electron. Devices Lett. , 151 - 153
    24. 24)
      • S.B. Schuldt . An exact derivation of contact resistance to planar devices. Solid-State Electron. , 715 - 719
    25. 25)
      • A. Cuevass , S. Lopez-Romero . The combined effect of nonuniform illumination and series resistance on the open circuit voltage of solar cell. Solar Cells , 69 - 80
    26. 26)
      • W.M. Loh , S.E. Swirhun , T.A. Schereyer , R.M. Swanson , K.C. Sarasvat . Modeling and measurement of contact resistance. IEEE Trans. Electron. Devices , 512 - 524
    27. 27)
      • J.L. Boone , T.P. van Doren . Solar cell design based on a distributed diode analysis. IEEE Trans. Electron. Devices , 767 - 771
    28. 28)
      • R. Gopal , R. Dwivedi , S.K. Srivastava . Open-circuit voltage decay behaviour in p–n junction diode at high injection. J. Appl. Phys. , 3476 - 3480
    29. 29)
      • M. Finetti , I. Suni , M.A. Nicolet . Finite metal-sheet resistance in contact resistivity measurement: Application to Si/Tin contacts. Solid-State Electron. , 1065 - 1067
    30. 30)
      • B. Prasad , N.M. Ravindra . The dependence of solar cell active layer resistance on illumination. Int. J. Electron. , 499 - 504
    31. 31)
      • G.L. Araujo , A. Cuevass , J.M. Ruiz . The effect of distributed series resistance on the dark and illuminated current-voltage characteristics of solar cells. IEEE Trans. Electron. Devices , 391 - 401
    32. 32)
      • A. de Vos . The distributed series resistance problem in solar cells. Solar Cells , 311 - 327
    33. 33)
      • H.S. Rauschenbach . (1980) , Solar cell array design handbook.
    34. 34)
      • M. Jameleddline , B. Hamouda , W. Gerlach . Determination of carrier lifetime from open-circuit voltage decay of p–i–n rectifier at high injection levels. IEEE Trans. Electron. Devices
    35. 35)
      • J.G.J. Chern , W.G. Oldham . Determining specific contact resistivity from contact and resistance measurement. IEEE Electron Devices Lett. , 178 - 180
    36. 36)
      • H. Pfeiffer , M. Bihler . The effect of nonuniform illumination of solar cell with concentrated light. Solar Cells , 293 - 299
    37. 37)
      • G.L. Araujo , E. Scanchez . A simple method for experimental determination of series resistance of solar cell. IEEE Trans. Electron. Devices , 1511 - 1513
    38. 38)
      • M. Wolf . Limitations and possibilities for improvement of photovoltaic energy converters. Proc. IRE , 1246 - 1263
    39. 39)
      • L.D. Nielsen . Distributed series resistance effects in solar cells. IEEE Trans. Electron. Devices , 821 - 827
    40. 40)
      • A. Luque , A. Cuevass , J.M. Ruiz . Double sided ppn solar cells for bifacial concentration. Solar Cells , 151 - 166
    41. 41)
      • A. Zekry , G. Eldallal . Effect of MS contact on the electrical behaviour of solar cells. Solid-State Electron. , 91 - 97
    42. 42)
      • R.N. Hall . Silicon photovoltaic cells. Solid-State Electron. , 595 - 616
    43. 43)
      • S.M. Sze . (1981) , Physics of semiconductor devices.
    44. 44)
      • J. Quanxi , L. Enke . A method for direct measurement of solar cell junction ideality factor. Solar Cells , 15 - 21
    45. 45)
      • M.S. Leong , S.C. Choo , L.S. Tan , T.L. Goh . Contact resistance calculation based on variational method. Solid-State Electron. , 1187 - 1195
    46. 46)
      • K.W. Heizer , T.L. Chu . Solar cell conducting grid structure. Solid-State Electron. , 471 - 472
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-g-2.1993.0025
Loading

Related content

content/journals/10.1049/ip-g-2.1993.0025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading