http://iet.metastore.ingenta.com
1887

Distributed parameter analysis of dark IV characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor

Distributed parameter analysis of dark IV characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings G (Circuits, Devices and Systems) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The present investigation deals with the distributed parameter analysis of the p–n junction solar cell in the current-induced case at low level injection. The theory, for the first time, takes into account the metal–semiconductor contact resistance, along with the base bulk resistance and the diffused layer shear resistance. The transcendentally nonlinear differential equations for the emitter layer current and voltage have been solved analytically. Additionally, expressions for the I–V characteristic and equivalent ‘lumped’ series resistance have been established. Such physical parameters are very useful in the optimisation of the contact finger width and separation. Inclusion of the contact resistance, even for very small values, corresponds to the nonuniform carrier generation within the metallic grid. Therefore, the results are affected both qualitatively and quantitatively. The most important effect has been calculated in the I–V characteristics resulting from an additional contribution to the series resistance. Analysis reveals that the series resistance and the diode quality factor vary with applied current.

References

    1. 1)
      • H.S. Rauschenbach . (1980) , Solar cell array design handbook.
    2. 2)
      • H. Pfeiffer , M. Bihler . The effect of nonuniform illumination of solar cell with concentrated light. Solar Cells , 293 - 299
    3. 3)
      • A. Cuevass , S. Lopez-Romero . The combined effect of nonuniform illumination and series resistance on the open circuit voltage of solar cell. Solar Cells , 69 - 80
    4. 4)
      • G.L. Araujo , A. Cuevass , J.M. Ruiz . The effect of distributed series resistance on the dark and illuminated current-voltage characteristics of solar cells. IEEE Trans. Electron. Devices , 391 - 401
    5. 5)
      • S.R. Dhariwal , S. Mittal , R.K. Mathur . Theory for voltage dependent series resistance in silicon solar cells. Solid-State Electron. , 263 - 273
    6. 6)
      • E.H. Rhoderick , R.H. Williams . (1988) , Metal-semiconductor contacts.
    7. 7)
      • H. Fischer , R. Greth . Electrochemically passivated contacts for silicon solar cells. IEEE Trans. Electron. Devices , 459 - 464
    8. 8)
      • M. Wolf . Limitations and possibilities for improvement of photovoltaic energy converters. Proc. IRE , 1246 - 1263
    9. 9)
      • J.L. Boone , T.P. van Doren . Solar cell design based on a distributed diode analysis. IEEE Trans. Electron. Devices , 767 - 771
    10. 10)
      • Iles, P.A.: `A survey of grid technology', IEEE 16th Photovoltaic Specialists Conf. Rec., 1982, San Diego, CA, p. 340.
    11. 11)
      • N.C. Wyeth . Sheet resistance component of series resistance in a solar cell as a function of grid geometry. Solid-State Electron. , 629 - 634
    12. 12)
      • A.R. Moore . (1979) RCA Rev..
    13. 13)
      • Castle, J.A.: `Design criteria for high efficiency silicon solar cell with concentrations', IEEE Photovoltaic Specialists Conf. Rec., 1976, Baton Rouge, LA, p. 751–759.
    14. 14)
      • A. Luque , A. Cuevass , J.M. Ruiz . Double sided ppn solar cells for bifacial concentration. Solar Cells , 151 - 166
    15. 15)
      • J. Granlund . Resistance associated with FET gate metallization. IEEE Electron. Devices Lett. , 151 - 153
    16. 16)
      • R.N. Hall . Silicon photovoltaic cells. Solid-State Electron. , 595 - 616
    17. 17)
      • L.D. Nielsen . Distributed series resistance effects in solar cells. IEEE Trans. Electron. Devices , 821 - 827
    18. 18)
      • A. Zekry , G. Eldallal . Effect of MS contact on the electrical behaviour of solar cells. Solid-State Electron. , 91 - 97
    19. 19)
      • K.W. Heizer , T.L. Chu . Solar cell conducting grid structure. Solid-State Electron. , 471 - 472
    20. 20)
      • Wolf, M., Rauschenbach, M.: `Series resistance effects on solar cell measurements', Advanced Energy Conference, 1963, 3, p. 455–479.
    21. 21)
      • R.J. Chaffin , G.C. Osbourn . Measurement of concentrated solar cell series resistance by false testing. Appl. Phys. Lett. , 637 - 639
    22. 22)
      • G.L. Araujo , E. Scanchez . A simple method for experimental determination of series resistance of solar cell. IEEE Trans. Electron. Devices , 1511 - 1513
    23. 23)
      • K. Rajkhanan , J. Schewchun . A better approach to the evaluation of the series resistance of solar cell. Solid-State Electron. , 193 - 197
    24. 24)
      • Boucher, J., Lescure, H.: `Determination of series resistance of a solar cell by dynamic method', Proc. E.C. 1st Photovoltaic Solar Energy Conference, 1977, Luxembourg, p. 1044.
    25. 25)
      • P.J. Chen , S.C. Rao , A. Neugroschel , F.A. Lindholm . Experimental determination of series resistance of a p–n junction diodes and solar cells. IEEE Trans. Electron. Devices , 386 - 388
    26. 26)
      • Fang, R.C., Hauser, J.R.: `A two dimensional analysis of sheet resistivity and contact resistance in solar cells', IEEE 13th Photovoltaic Specialists Conf. Rec., 1978, p. 1306.
    27. 27)
      • A. de Vos . The distributed series resistance problem in solar cells. Solar Cells , 311 - 327
    28. 28)
      • R. Gopal , R. Dwivedi , S.K. Srivastava . Open-circuit voltage decay behaviour in p–n junction diode at high injection. J. Appl. Phys. , 3476 - 3480
    29. 29)
      • S.M. Sze . (1981) , Physics of semiconductor devices.
    30. 30)
      • Bobbio, S., Califano, F.B., Ciccarone, E.: `Nonlinear analysis of solar cell series resistance', Proceedings of the International Conference on Photovoltaic Solar Energy, 1977, Luxembourg, p. 1006.
    31. 31)
      • B. Prasad , N.M. Ravindra . The dependence of solar cell active layer resistance on illumination. Int. J. Electron. , 499 - 504
    32. 32)
      • A. de Vos , P. de Visschrer . Diagnosis of a large series resistance in solar cells. Solar Cells , 69 - 80
    33. 33)
      • R. Bellman . (1970) , Methods of nonlinear analysis.
    34. 34)
      • M. Jameleddline , B. Hamouda , W. Gerlach . Determination of carrier lifetime from open-circuit voltage decay of p–i–n rectifier at high injection levels. IEEE Trans. Electron. Devices
    35. 35)
      • J. Quanxi , L. Enke . A method for direct measurement of solar cell junction ideality factor. Solar Cells , 15 - 21
    36. 36)
      • H.H. Berger . Models for contact to planar devices. Solid-State Electron.
    37. 37)
      • D. Fuchs , H. Sigmind . Analysis of the current-voltage characteristics of solar cells. Solid State Electron. , 791 - 795
    38. 38)
      • S.B. Schuldt . An exact derivation of contact resistance to planar devices. Solid-State Electron. , 715 - 719
    39. 39)
      • M. Finetti , I. Suni , M.A. Nicolet . Finite metal-sheet resistance in contact resistivity measurement: Application to Si/Tin contacts. Solid-State Electron. , 1065 - 1067
    40. 40)
      • W.M. Loh , S.E. Swirhun , T.A. Schereyer , R.M. Swanson , K.C. Sarasvat . Modeling and measurement of contact resistance. IEEE Trans. Electron. Devices , 512 - 524
    41. 41)
      • J.G.J. Chern , W.G. Oldham . Determining specific contact resistivity from contact and resistance measurement. IEEE Electron Devices Lett. , 178 - 180
    42. 42)
      • S.E. Seirhum , W.M. Loh , R.M. Swanson , K.C. Sarasvat . Current crowding effects and determination of specific contact resistivity from contact end resistance (CER) measurement. IEEE Electron. Devices Lett. , 639 - 641
    43. 43)
      • K.NG. Knok . Novel technique to measure the contact resistance of MOSFET. IEEE Trans. Electron. Devices
    44. 44)
      • M.S. Leong , S.C. Choo , L.S. Tan , T.L. Goh . Contact resistance calculation based on variational method. Solid-State Electron. , 1187 - 1195
    45. 45)
      • A. Vishnoi , R. Gopal , R. Dwivedi , S.K. Srivastava . Combined effect of nonuniform illumination and surface resistance on the performance of solar cell. Int. J. Electron. , 755 - 774
    46. 46)
      • A. Vishnoi , R. Gopal , R. Dwivedi , S.K. Srivastava . Studies of surface voltage and current transients in solar cells for accurate evaluation of minority carrier lifetime. Solid-State Electron. , 17 - 24
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-g-2.1993.0025
Loading

Related content

content/journals/10.1049/ip-g-2.1993.0025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address