© The Institution of Electrical Engineers
An orthogonal series approach is presented for statespace analysis of 1D and 2D linear timeinvariant discrete systems. This approach makes use of the backward shift operation matrix derived in the paper, and yields explicit expressions for the state and output orthogonal coefficient matrixes. These expressions involve only multiplication of small dimension matrixes thus simplifying the computational effort as compared to known orthogonal function techniques, where the inversion of large matrixes is required.
References


1)

I.R. Horng ,
S.J. Ho
.
Application of discrete Chebychev polynomials to the optimal control of digital systems.
Int. J. Control
,
1 ,
243 
250

2)

R.Y. Hwang ,
Y.P. Shih
.
Model reduction of discrete systems via discrete Chebychev polynomials.
Int. J. Syst. Sci.
,
3 ,
301 
308

3)

V.P. Perov
.
Design of sampleddata systems in orthogonal basis Part III.
Autom. Remote Control.
,
10 ,
1517 
1522

4)

R.E. King ,
P.N. Paraskevopoulos
.
Digital Laguerre filters.
Int. J. Circuit Theory Appl.
,
89 
91

5)

R.E. King ,
P.N. Paraskevopoulos
.
Parametric identification of discretetime SISO systems.
Int. J. Control
,
6 ,
1023 
1029

6)

R.Y. Hwang ,
Y.P. Shih
.
Combined methods for model reduction via discrete Laguerre polynomials.
Int. J. Control
,
3 ,
615 
622

7)

I.R. Horng ,
S.J. Ho
.
Optimal control using discrete Laguerre polynomials.
Int. J. Control
,
6 ,
1613 
1619

8)

I.R. Horng ,
J.H. Chou ,
T.W. Yang
.
Model reduction of digital systems using discrete Walsh series.
IEEE Trans.
,
10 ,
962 
964

9)

I.R. Horng ,
S.J. Ho
.
Discrete walsh polynomials in the optimal control of linear digital timevarying systems.
Int. J. Control
,
2 ,
615 
627

10)

B.G. Mertzios
.
Solution and identification of discrete state space equations via Walsh functions.
J. Franklin Inst.
,
6 ,
383 
391

11)

T.T. Lee ,
Y.F. Tsay
.
Analysis and optimal control of discrete linear timevarying via discrete general orthogonal polynomials.
Int. J. Control.
,
5 ,
1427 
1436

12)

T.T. Lee ,
Y.F. Tsay
.
Application of general discrete orthogonal polynomials to optimal control systems.
Int. J. Control
,
5 ,
1375 
1386

13)

R.P. Roesser
.
A discrete statespace model for linear image processing.
IEEE Trans.
,
1 ,
1 
10

14)

D.D. Givone ,
R.P. Roesser
.
Minimization of multidimensional linear iterative circuits.
IEEE Trans.
,
7 ,
673 
677

15)

R.J. Schwarz ,
B. Friedland
.
(1965)
, Linear systems.

16)

P.N. Paraskevopoulos
.
A new series approach to state space analysis and identification.
Int. J. Syst. Sci.
,
6 ,
957 
970
http://iet.metastore.ingenta.com/content/journals/10.1049/ipg2.1990.0031
Related content
content/journals/10.1049/ipg2.1990.0031
pub_keyword,iet_inspecKeyword,pub_concept
6
6