http://iet.metastore.ingenta.com
1887

New orthogonal series approach to state-space analysis of 1-D and 2-D discrete systems

New orthogonal series approach to state-space analysis of 1-D and 2-D discrete systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings G (Circuits, Devices and Systems) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An orthogonal series approach is presented for state-space analysis of 1-D and 2-D linear time-invariant discrete systems. This approach makes use of the backward shift operation matrix derived in the paper, and yields explicit expressions for the state and output orthogonal coefficient matrixes. These expressions involve only multiplication of small dimension matrixes thus simplifying the computational effort as compared to known orthogonal function techniques, where the inversion of large matrixes is required.

References

    1. 1)
      • I.R. Horng , S.J. Ho . Application of discrete Chebychev polynomials to the optimal control of digital systems. Int. J. Control , 1 , 243 - 250
    2. 2)
      • R.Y. Hwang , Y.P. Shih . Model reduction of discrete systems via discrete Chebychev polynomials. Int. J. Syst. Sci. , 3 , 301 - 308
    3. 3)
      • V.P. Perov . Design of sampled-data systems in orthogonal basis Part III. Autom. Remote Control. , 10 , 1517 - 1522
    4. 4)
      • R.E. King , P.N. Paraskevopoulos . Digital Laguerre filters. Int. J. Circuit Theory Appl. , 89 - 91
    5. 5)
      • R.E. King , P.N. Paraskevopoulos . Parametric identification of discrete-time SISO systems. Int. J. Control , 6 , 1023 - 1029
    6. 6)
      • R.Y. Hwang , Y.P. Shih . Combined methods for model reduction via discrete Laguerre polynomials. Int. J. Control , 3 , 615 - 622
    7. 7)
      • I.R. Horng , S.J. Ho . Optimal control using discrete Laguerre polynomials. Int. J. Control , 6 , 1613 - 1619
    8. 8)
      • I.R. Horng , J.H. Chou , T.W. Yang . Model reduction of digital systems using discrete Walsh series. IEEE Trans. , 10 , 962 - 964
    9. 9)
      • I.R. Horng , S.J. Ho . Discrete walsh polynomials in the optimal control of linear digital time-varying systems. Int. J. Control , 2 , 615 - 627
    10. 10)
      • B.G. Mertzios . Solution and identification of discrete state space equations via Walsh functions. J. Franklin Inst. , 6 , 383 - 391
    11. 11)
      • T.T. Lee , Y.F. Tsay . Analysis and optimal control of discrete linear time-varying via discrete general orthogonal polynomials. Int. J. Control. , 5 , 1427 - 1436
    12. 12)
      • T.T. Lee , Y.F. Tsay . Application of general discrete orthogonal polynomials to optimal control systems. Int. J. Control , 5 , 1375 - 1386
    13. 13)
      • R.P. Roesser . A discrete state-space model for linear image processing. IEEE Trans. , 1 , 1 - 10
    14. 14)
      • D.D. Givone , R.P. Roesser . Minimization of multidimensional linear iterative circuits. IEEE Trans. , 7 , 673 - 677
    15. 15)
      • R.J. Schwarz , B. Friedland . (1965) , Linear systems.
    16. 16)
      • P.N. Paraskevopoulos . A new series approach to state space analysis and identification. Int. J. Syst. Sci. , 6 , 957 - 970
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-g-2.1990.0031
Loading

Related content

content/journals/10.1049/ip-g-2.1990.0031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address