Monogenic function range resolution radar

Access Full Text

Monogenic function range resolution radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings F (Communications, Radar and Signal Processing) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sequences having peaky autocorrelation are useful in range resolution radar and in a homomorphic problem of detecting reflections in seismic exploration. The concept of correlative signal processing for system identification in these applications is extended here to processing based on monogenic signatures. Some sequences having good monogenic signatures are listed. These yield sequence compression equal to the length of the sequences, and peak/sidelobe ratios or merit factors could be superior to those obtainable in correlative processing for the same length of sequences. The problems in developing monogenic function radar are discussed and some solutions proposed.

Inspec keywords: remote sensing; radar applications; correlation methods; seismology; radar theory; geophysical techniques

Other keywords: peak/sidelobe ratios; seismic reflections detection; monogenic signatures; correlative signal processing; system identification; peaky autocorrelation; seismic exploration; monogenic functions range resolution radar; homomorphic problem; sequence compression

Subjects: Radar equipment, systems and applications; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Controlled source seismology; Information theory; Radar theory

References

    1. 1)
      • D.E. Vakman . (1968) , Sophisticated signals and uncertainty principle in radar.
    2. 2)
      • P.S. Moharir . (1985) Signal design for system identification, UGC 1985-86 national lectures.
    3. 3)
      • P.S. Moharir , K. Venkata Rao , S.K. Varma . Barker towers. Electron. Lett. , 1027 - 1029
    4. 4)
      • P.S. Moharir . Signal design. Int. J. Electron. , 381 - 398
    5. 5)
      • C.E. Cook , M. Bernfeld . (1967) , Radar signals — an introduction to theory and application.
    6. 6)
      • G.R. Welti . Quaternary codes for pulsed radar. IEEE Trans. , 400 - 408
    7. 7)
      • P.S. Moharir , S.K. Varma , K. Venkata Rao . Ternary pulse compression sequences. J. Inst. Electron. & Telecommun. Eng. , 2 , 1 - 8
    8. 8)
      • Moharir, P.S.: `Selective explicit substitution in ground water modelling', Proceedings of regional workshop on groundwater modelling, December 1986, Roorkee, University of Roorkee, p. 175–183.
    9. 9)
      • Moharir, P.S.: `Terminal admissibility techniques for signal design', 43, CIP report, 1975.
    10. 10)
      • M.J.E. Golay . Sieves for low auto correlation binary sequences. IEEE Trans. , 43 - 51
    11. 11)
      • S.E. Goodman , S.T. Hedetniemi . (1977) , Introduction to the design and analysis of algorithms.
    12. 12)
      • A.M. Boehmer . Binary pulse compression codes. IEEE Trans. , 156 - 167
    13. 13)
      • M.J.E. Golay . Merit factor of long low autocorrelation binary sequences. IEEE Trans. , 543 - 549
    14. 14)
      • A.R. Gourlay , A.R. Mitchell . The equivalence of certain alternating direction and locally one-dimensional difference methods. SIAM. J. Numer. Anal. , 37 - 46
    15. 15)
      • D.W. Peaceman , H.H. Rachford . The numerical solution of parabolic and elliptical differential equations. J. SIAM , 28 - 41
    16. 16)
      • J. Douglas . Alternating direction methods for three space variables. Numer. Math. , 41 - 63
    17. 17)
      • B.V. Rao . The Barker sequence. J. Inst. Electron. & Telecommun. Eng.
    18. 18)
      • Venkata Rao, K.: `Coded waveform design for radar', 1984, Ph.D. dissertation, University of Roorkee, Roorkee.
    19. 19)
      • M.J.E. Golay . Complementary series. IRE Trans. , 82 - 87
    20. 20)
      • E.G. D'Yakonov . Difference schemes with split operators for multidimensional unsteady problems. USSR Comput. Math. & Math. Phys. , 92 - 110
    21. 21)
      • K.V. Rao , V.U. Reddy . Biphase sequence generation with low sidelobe autocorrelation function. IEEE Trans. , 128 - 133
    22. 22)
      • C.C. Tseng , C.L. Liu . Complementary sets of sequences. IEEE Trans. , 644 - 652
    23. 23)
      • J.W. Goethe . Maximen und reflexionen, nr. 1280. Am. Math. Month.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-f-1.1987.0103
Loading

Related content

content/journals/10.1049/ip-f-1.1987.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading