Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Performance comparisons of model-free control strategies for hybrid magnetic levitation system

Performance comparisons of model-free control strategies for hybrid magnetic levitation system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study mainly focuses on the development of three model-free control strategies including a simple proportional-integral-differential (PID) scheme, a fuzzy-neural-network (FNN) control and an adaptive control for the positioning of a hybrid magnetic levitation (maglev) system. In general, the lumped-parameters dynamic model of a hybrid maglev system can be derived from the energy balance. In practice, the mathematical model can not be established precisely because this hybrid maglev system is inherently unstable in the levitated direction, and the relationships between current and electromagnetic force are highly nonlinear. To cope with the unavailable dynamics, model-free control design is used to handle the system behaviour. In this study the experimental results of PID, FNN and adaptive control schemes for the hybrid maglev system are reported. As can be seen from performance comparisons, the adaptive control system yields favorable control performance superior to that of PID and FNN control systems. Moreover, it not only has a learning ability similar to that of FNN control but also the simple control structure of PID control.

References

    1. 1)
      • Jie, X., Kulakowski, B.T.: `Sliding mode control of active suspension for transit buses based on a novel air-spring model', Proc. of IEEE American Control Conf., 2003, p. 3768–3773.
    2. 2)
      • W.G. Hurley , M. Hynes , W.H. Wolfle . PWM control of a magnetic suspension system. IEEE Trans. Educ. , 2 , 165 - 173
    3. 3)
      • O. Omidvar , D.L. Elliott . (1997) Neural systems for control.
    4. 4)
      • M.Y. Chen , M.J. Wang , L.C. Fu . Modeling and controller design of a maglev guiding system for application in precision positioning. IEEE Trans. Ind. Electron. , 3 , 493 - 506
    5. 5)
      • O.S. Kim , S.H. Lee , D.C. Han . Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing. IEEE Trans. Ind. Electron. , 2 , 374 - 378
    6. 6)
      • C.T. Lin , C.S. George Lee . (1996) Neural fuzzy systems.
    7. 7)
      • K. Nagaya , M. Ishikawa . A noncontact permanent-magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators. IEEE Trans. Magn. , 1 , 885 - 896
    8. 8)
      • W.J. Kim , D.L. Trumper , J.H. Lang . Modeling and vector control of planar magnetic levitator. IEEE Trans. Ind. Appl. , 6 , 1254 - 1262
    9. 9)
      • L.X. Wang . (1997) A course in fuzzy systems and control.
    10. 10)
      • M. Ono , S. Koga , H. Ohtsuki . Japan's superconducting maglev train. IEEE Instrum. Meas. Mag. , 1 , 9 - 15
    11. 11)
      • F.J. Lin , R.J. Wai , H.P. Chen . A PM synchronous servo motor drive with an online trained fuzzy neural-network controller. IEEE Trans. Energy Convers. , 4 , 319 - 325
    12. 12)
      • Kim, C.Y., Kim, K.H.: `Gain scheduled control of magnetic suspension systems', Proc. of IEEE Amer. Control Conf., 1994, p. 3127–3131.
    13. 13)
      • I. Boldea , A. Trica , G. Papusoiu , S.A. Nasar . Field tests on a MAGLEV with passive guideway linear inductor motor transportation system. IEEE Trans. Veh. Technol. , 4 , 213 - 219
    14. 14)
      • H. Nakashima . The superconducting magnet for the Maglev transport system. IEEE Trans. Magn. , 4 , 1572 - 1578
    15. 15)
      • J.R. Powell , G.T. Danby . Maglev vehicles-raising transportation advances of the ground. IEEE Trans. Pot. , 4 , 7 - 12
    16. 16)
      • F.J. Lin , R.J. Wai , C.C. Lee . Fuzzy neural-network position controller for ultrasonic motor drive using push-pull DC–DC converter. IEE Proc. Control Theory Appl. , 1 , 99 - 107
    17. 17)
      • P. Holmer . Faster than a speeding bullet train. IEEE Spectrum , 8 , 30 - 34
    18. 18)
      • F. Matsumura , T. Namerikawa , K. Hagiwara , M. Fujita . Application of gain scheduled H∞ robust controllers to a magnetic bearing. IEEE Trans. Control Syst. Technol. , 5 , 484 - 493
    19. 19)
      • C.M. Huang , J.Y. Yen , M.S. Chen . Adaptive nonlinear control of repulsive maglev suspension systems. Control Eng. Pract. , 12 , 1357 - 1367
    20. 20)
      • J.T. Jeng , T.T. Lee . Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network. IEEE Trans. Syst., Man. Cybern., Part B , 1 , 85 - 92
    21. 21)
      • M.O.T. Cole , P.S. Keogh , C.R. Burrows . Fault-tolerant control of rotor/magnetic bearing systems using reconfigurable control with built-in fault detection. Proc. Inst. Mech. Eng., Part C , 12 , 1445 - 1465
    22. 22)
      • Y.C. Chang , S.J. Wu , T.T. Lee . Minimum-energy neural-fuzzy approach for current/voltage-controlled electromagnetic suspension system. IEEE Trans. Comput. Intell. Robot. Autom. , 1405 - 1410
    23. 23)
      • D.M. Tang , H.P. Gavin , E.H. Dowell . Study of airfoil gust response alleviation using an electro-magnetic dry friction damper. part 2: experiment. J. Sound Vib. , 875 - 897
    24. 24)
      • J. Kaloust , C. Ham , J. Siehling , E. Jongekryg , Q. Han . Nonlinear robust control design for levitation and propulsion of a maglev system. IEE Proc. Control Theory Appl. , 4 , 460 - 464
    25. 25)
      • C.T. Lin , C. P. Jou . GA-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans. Syst. Man Cybern., Part B , 2 , 276 - 289
    26. 26)
      • M. Lepetic , I. Skrjanc , H.G. Chiacchiarini , D. Matko . Predictive functional control based on fuzzy model: magnetic suspension system case study. Eng. Appl. Arti. Intell. , 425 - 430
    27. 27)
      • K.J. Astrom , B. Wittenmark . (1995) Adaptive control.
    28. 28)
      • W.G. Hurley , W.H. Wolfle . Electromagnetic design of a magnetic suspension system. IEEE Trans. Educ. , 2 , 124 - 130
    29. 29)
      • J.J.E. Slotine , W. Li . (1991) Applied nonlinear control.
    30. 30)
      • P.K. Sinha , A.N. Pechev . Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica , 1457 - 1465
    31. 31)
      • M.S. Queiroz , D.M. Dawson . Nonlinear control of active magnetic bearings: a backstepping approach. IEEE Trans. Control Syst. Technol. , 5 , 545 - 552
    32. 32)
      • S.K. Hong , R. Langari . Fuzzy modeling and control of a nonlinear magnetic bearing system. J. Intell. Fuzzy Syst. , 4 , 335 - 346
    33. 33)
      • D.L. Trumper , S.M. Olson , P.K. Subrahmanyan . Linearizing control of magnetic suspension systems. IEEE Trans. Control Syst. Technol. , 4 , 427 - 438
    34. 34)
      • R.J. Wai . Robust control of linear ceramic motor drive with LLCC resonant technique. IEEE Trans. Ultrason., Ferroelect., Freq. Control , 7 , 911 - 920
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-epa_20050198
Loading

Related content

content/journals/10.1049/ip-epa_20050198
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address