http://iet.metastore.ingenta.com
1887

Uncertainty modelling and structured singular-value computation applied to an electromechanical system

Uncertainty modelling and structured singular-value computation applied to an electromechanical system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The investigation of closed-loop systems subject to model perturbations is an important issue to assure stability robustness of a control design. A large variety of model perturbations can be described by norm-bounded uncertainty models. A general approach for modelling structured complex and real-valued parametric perturbations is presented. The resulting robustness analysis problem is solved nonconservatively using real and complex-structured singular-value calculations. The uncertainty modelling and robustness analysis are shown for a high-accuracy 5D electromechanical positioning device to be used in optical (Compact Disc) recording.

References

    1. 1)
      • Stein, G., Doyle, J.C.: `Singular values and feedback: design examples', Proceedings 16th Annual Allerton Conference on Communication, Control and Computation, October 1978, Univ. of Illinois, p. 460–471.
    2. 2)
      • Doyle, J.C., Wall, J.E., Stein, G.: `Performance and robustness analysis for structured uncertainty', Proceedings IEEE Conference on Decision and Control, 1982, p. 626–639.
    3. 3)
      • J.C. Doyle . Analysis of feedback systems with structured uncertainties. IEE Proc. D. Control Theory & Appl. , 6 , 242 - 250
    4. 4)
      • M.K.H. Fan , A.L. Tits , J.C. Doyle . Robustness in the presence of mixed parametric uncertainty and unmodelled dynamics. IEEE Trans. , 25 - 38
    5. 5)
      • M.K.H. Fan , J.C. Doyle , A.L. Tits . Robustness in the presence of mixed parametric uncertainty and unmodelled dynamics. Lect. Notes Control Inf. Sci. , 363 - 367
    6. 6)
      • Steinbuch, M.: `Dynamic modelling and robust control of a wind energy conversion system', , PhD dissertation, Delft University of Technology.
    7. 7)
      • J.C. Terlouw , P.F. Lambrechts , S. Bennani , M. Steinbuch . Parametric LFT uncertainty modelling.
    8. 8)
      • C.T. Chen . (1984) , Linear system theory and design.
    9. 9)
      • Doyle, J.C., Packard, A.: `Uncertain multivariable systems from a state space perspective', Proceedings of the American Control Conference, 1987, p. 2147–2152.
    10. 10)
      • Morton, B.G., McAfoos, R.M.: `A mu-test for robustness analysis of a real-parameter vaiation problem', Proceedings of the American Control Conference, 1985, p. 135–138.
    11. 11)
      • G.J. Balas , A. Packard , J.C. Doyle . (1990) , Theory and application of robust multivariable control.
    12. 12)
      • M.K.H. Fan , J.C. Doyle . Characterization and efficient computation of the structured singular value. IEEE Trans. , 734 - 743
    13. 13)
      • G. Zames . Feedback and optimal sensitivity: model reference transformations multiplicative seminorms and approximate inverses. IEEE Trans. , 301 - 320
    14. 14)
      • N.-K. Tsing . Convexity of the largest singular value of eDMe−D: a convexity lemma. IEEE Trans. , 748 - 749
    15. 15)
      • Telouw, J.C.: `Robustness analysis of control systems with parametric uncertainty', TN 099/90, Philips Technical Note, .
    16. 16)
      • B.R. Barmish , P.P. Khargonekar , Z.C. Shi , R. Tempo . Robustness margin need not be a continuous function of the problem data. Syst. Control Lett. , 91 - 98
    17. 17)
      • G. van Rosmalen . A floating-lens actuator. Jpn. J. Appl. Phys. I , 195 - 197
    18. 18)
      • Steinbuch, M., Bosgra, O.H., Sperling, F.B.: `Robust linear quadratic output feedback of a 5D electro-mechanical actuator', IFAC Symposium on Computer Aided Design in Control Systems, 15–17 July 1991, Swansea, UK, Pergamon, , p. 437–442.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1992.0041
Loading

Related content

content/journals/10.1049/ip-d.1992.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address