Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Dynamic performance of robot manipulators under different operating conditions

Dynamic performance of robot manipulators under different operating conditions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The dynamical performance of robot manipulators is greatly affected by the different payloads handled by the end-effector (hand). Hence, it is very important, especially for industrial applications, to study the different interconnected relationships between the manipulator's joints, speeds, loads and actuation forces. In the paper, a simplified semicustomised symbolic formulation of robot dynamics, based on the Lagrangian, is presented, with emphasis on the Coriolis and centripetal effects. The accuracy and computational efficiency of this new formulation is demonstrated by simulation of the Stanford and PUMA 560 robot manipulators. Useful quantitative measurements and error analysis are also included on the significance of Coriolis and centripetal terms, under different load and speed conditions.

References

    1. 1)
      • H. Denavit , R. Hartenberg . A kinematic notation for lower pair mechanisms based on matrices. J. Appl. Mech. , 22 , 215 - 221
    2. 2)
      • R.A. Lewis . (1974) , Autonomous manipulation on a robot: summary of manipulator software functions.
    3. 3)
      • K.G. Shin , N.D. McKay . Robust trajectory planning for robotic manipulators under payload uncertainties. IEEE Trans. , 12 , 1044 - 1054
    4. 4)
      • C.S. Lin , A.K. Bejczy , P.R. Chang . Manipulator dynamics simplification based on function approximation. Robotics & Automation , 2 , 97 - 104
    5. 5)
      • T. Kane , D. Levinson . The use of Kane's dynamical equations in robotics. Int. J. Robotics Res. , 3 , 3 - 21
    6. 6)
      • R.P. Paul . (1981) , Robot manipulators: mathematics, programming, and control.
    7. 7)
      • V.D. Tourassis , C.P. Neuman . Properties and structure of dynamic robot models for control engineering applications. Mech. & Mech. Theory , 1 , 27 - 40
    8. 8)
      • J.Y.S. Luh , C.S. Lin . Scheduling of parallel computation for a computer controlled mechanical manipulator. IEEE Trans. , 2 , 214 - 234
    9. 9)
      • J.Y.S. Luh , M.W. Walker , R.P. Paul . On-line computational scheme for mechanical manipulators. Trans. ASME J. Dyn. Syst. Meas. & Control , 69 - 76
    10. 10)
      • SUN, MICROSYSTEMS INC (1984): ‘FORTRAN programmer's guide for the sun workstations’. Sun Microsystems, Inc., 1984, Mountain View, CA 94043.
    11. 11)
      • Zomaya, A.Y., Morris, A.S.: `Real-time dynamic simulation of robot manipulators', Third European Simulation Conference, 1989, Edinburgh Scotland, UK, p. 588–594.
    12. 12)
      • A.K. Bejczy . (1974) , Robot arm dynamics and control.
    13. 13)
      • E.E. Binder , J.H. Herzog . Distributed computer architecture and fast parallel algorithms in real-time robot control. IEEE Trans. , 4 , 543 - 549
    14. 14)
      • P. Coiffet . (1983) , Robot technology—Vol. 2: Interaction with the environment.
    15. 15)
      • C.P. Neuman , J.J. Murray . Customized computational robot dynamics. J. Robotic Syst. , 4 , 503 - 526
    16. 16)
      • W.M. Silver . On the equivalence of Langrangian and Newton-Euler dynamics for manipulators. Int. J. Robotics Res. , 2 , 60 - 70
    17. 17)
      • C.P. Neuman , V.D. Tourassis . Robot control: Issues and insight. Proc. 3rd Yale Workshop Appl. Adaptive Syst. Theory , 179 - 189
    18. 18)
      • Uiker, J.J.: `On the dynamic analysis of spatial linkages using 4 × 4 matrices', 1965, PhD thesis, Northwestern University, Department of Mechanical Engineeringand Astronautical Sciences, .
    19. 19)
      • L.T. Wang , B. Ravani . Dynamic load carrying capacity of mechanical manipulators—Part II: Computational procedure and applications. Trans. ASME J. Dyn. Syst. Meas. & Control. , 53 - 61
    20. 20)
      • Zomaya, A.Y., Morris, A.S.: `Transputer networks for fast robot dyanmics', IMA conference on robotics: applied mathematics and computational aspects, 1989, Wiley, .
    21. 21)
      • C.P. Neuman , J.J. Murray . Computational robot dynamics: Foundations and applications. J. Robotic Syst. , 4 , 425 - 452
    22. 22)
      • Y. Zheng , H. Hemami . Computation of multibody system dynamics by a multiprocessor scheme. IEEE Trans. , 1 , 102 - 110
    23. 23)
      • C.S.G. Lee , P.R. Chang . Efficient parallel algorithm for robot inverse dynamics computation. IEEE Trans. , 4 , 532 - 542
    24. 24)
      • M.W. Walker , D.E. Orin . Efficient dynamic computer simulation of robotic mechanisms. Trans. ASME J. Dyn. Syst. Meas. & Control. , 205 - 211
    25. 25)
      • Turney, J.L., Mudge, T.N., Lee, C.S.G.: `Connection between formulations of robot arm dynamics and applications to simulation and control', RSD-TR-4–82, Research report, 1981.
    26. 26)
      • Tarn, T.J., Bejczy, A.K., Yun, X., Ding, X.: `Dynamic equation for six link PUMA 560 robot arm', SSM-RL-86–05, Robotics Lab. Report, 1986.
    27. 27)
      • M.H. Raibert , B.K. Horn . Manipulator control using the configuration space method. Ind. Robot , 2 , 69 - 73
    28. 28)
      • J. Koplik , M.C. Leu . Computer generation of robot dynamics equations and related issues. J. Robotic Syst. , 3 , 301 - 319
    29. 29)
      • Izaguirre, A., Paul, R.P.: `Computation of the inertial and gravitational coefficients of the dynamics equations for a robot manipulator with a load', Proc. IEEE Int. Conf. Robotics & Automation, 1985, St. Louis, Missouri, p. 1024–1032.
    30. 30)
      • J.M. Hollerbach . A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. , 11 , 730 - 736
    31. 31)
      • H. Faessler . Computer-assisted generation of dynamical equations for multibody systems. Int. J. Robotics Res. , 3 , 129 - 141
    32. 32)
      • Lee, C.S.G., Lee, B.H., Nigam, R.: `Development of the generalized d'Alembert equations of motion for mechanical manipulators', Proc. 22nd Conf. Decision & Control, 1983, San Antonio, TX, USA, p. 1205–1210.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1990.0034
Loading

Related content

content/journals/10.1049/ip-d.1990.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address