Bode's integral theorem for discrete-time systems

Access Full Text

Bode's integral theorem for discrete-time systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A paper by Bode has shown the limitations of using a feedback structure in terms of an integral constraint on the sensitivity function for open-loop stable continuous-time systems. The paper by Mohtadi examines and derives equivalent results for discrete-time feedback systems. These integral constraints also provide some guidelines regarding the philosophy of feedback design specifically for sampled-data systems. For example, it is shown that, for all sampled-data control systems, there is a maximum sampling frequency, beyond which little improvement in performance is gained.

Inspec keywords: integration; feedback; discrete time systems

Other keywords: Bode theorem; open-loop stable continuous-time systems; sensitivity function; feedback design philosophy; discrete-time feedback systems; integral theorem; sampled-data control systems; sampling frequency; feedback structure; integral constraint

Subjects: Mathematical analysis; Discrete control systems

References

    1. 1)
      • R.E. Kalman . When is a linear control system optimal?. J. Basic Eng., Ser. D , 51 - 60
    2. 2)
      • K. ÅSTRÖM , B. WITTENMARK . (1984) , Computer controlled systems.
    3. 3)
      • I. Horowitz . Quantitative feedback theory. IEE Proc. D , 6 , 215 - 226
    4. 4)
      • I. Horowitz , Y.K. Liao . Limitations of nonminimumphase feedback systems. Int. J. Control , 5 , 1003 - 1013
    5. 5)
      • B.A. FRANCIS . (1987) , A course in .
    6. 6)
      • J.S. Freudenberg , D.P. Looze . A sensitivity tradeoff for plants with time-delay. IEEE Trans. , 2 , 99 - 104
    7. 7)
      • K.J. Åström , P. Hagander , J. Sternby . Zeros of sampled systems. Automatica , 1 , 31 - 38
    8. 8)
      • H.K. Sung , S. Hara . Properties of sensitivity and complementary sensitivity functions in single input single output digital control systems. Int. J. Control 1988 , 6 , 2429 - 2439
    9. 9)
      • Y.S. Hung , A.G.J. MacFarlane . (1982) , Multivariable feedback: a quasi-classical approach.
    10. 10)
      • S.D. O'Young , B.C. Francis . Sensitivity tradeoffs for multivariable plants. IEEE Trans. , 7 , 625 - 632
    11. 11)
      • I.M. Horowitz . (1963) , Synthesis of feedback systems.
    12. 12)
      • J.S. Freudenberg , D.P. Looze . Right half plane poles and zeros and design tradeoffs in feedback systems. IEEE Trans. , 6 , 555 - 565
    13. 13)
      • H.W. Bode . (1945) , Network analysis and feedback amplifier design.
    14. 14)
      • R.V. Churchill , J.W. Brown . (1990) , Complex variables and applications.
    15. 15)
      • M. Sidi . On maximization of gain bandwidth in sampled systems. Int. J. Control , 6 , 1099 - 1109
    16. 16)
      • K.J. Åström , B. Wittenmark . (1989) , Adaptive control.
    17. 17)
      • G. Stein , M. Athans . The LQG/LTR procedure for multivariable feedback control design. IEEE Trans. , 2 , 105 - 114
    18. 18)
      • J.S. Freudenberg , D.P. Looze . (1988) , Frequency domain properties of scalar and multivariable feedback systems.
    19. 19)
      • D.W. Clarke , C. Mohtadi , P.S. Tuffs . Generalized predictive control: extensions and interpretations. Automatica , 149 - 160
    20. 20)
      • B. Francis , G. Zames . An HΘ optimal sensitivity theory for SISO feedback systems. IEEE Trans. , 1 , 9 - 16
    21. 21)
      • J. Doyle , G. Stein . Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Trans. , 1 , 4 - 16
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1990.0006
Loading

Related content

content/journals/10.1049/ip-d.1990.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading