http://iet.metastore.ingenta.com
1887

Poles-zeros placement and decoupling in dicrete LQG systems

Poles-zeros placement and decoupling in dicrete LQG systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A design algorithm is introduced to synthesise a discrete time LQG optimal controller subject to design constraints requiring (i) complete and arbitrary stable poles placement, (ii) some zeros assignment, and (iii) input-output decoupling. The zeros placement is partially used to deal with the deterministic reference tracking and disturbances rejection problems. In the paper, the Wiener-Hopf technique is employed and two weighting matrices are shaped by the inverse optimal control method, so that the controller is optimal with respect to the chosen weighting matrices and achieves the above three goals simultaneously.

References

    1. 1)
      • M.J. Grimble . LQG design of discrete systems using a dual criterion. IEE Proc. D, Control Theory & Appl. , 2 , 61 - 68
    2. 2)
      • M.J. Grimble . Solution of the discrete-time stochastic optimal control problem in the z-domain. Int. J. Syst. Sci. , 1369 - 1390
    3. 3)
      • B.S. Chen , W.J. Wang . Multipurpose controller synthesis in LQG optimal systems. IEE Proc. D, Control Theory & Appl. , 5 , 182 - 188
    4. 4)
      • W.A. Wolovich . Multipurpose controllers for multivariable systems. IEEE Trans. , 162 - 170
    5. 5)
      • D.C. Youla , H.A. Jabr , J.J. Bongiorno . Modern Wiener Hopf design of optimal controllers, Part I and II. IEEE Trans. , 3 - 13
    6. 6)
      • M.J. Grimble . Solution of the stochastic optimal control problem in the s-domain for systems with time delay. Proc. IEE, Contr. & Sci. , 697 - 704
    7. 7)
      • R. Saeks , J. Murry . Feedback system design the tracking and disturbance rejection problems. IEEE Trans. , 203 - 217
    8. 8)
      • U. Shaked . A general transfer function approach to linear stationary filtering and steady-state optimal control problems. Int. J. Control , 741 - 770
    9. 9)
      • V. Kucera . (1979) , Discrete linear control – the polynomial equation approach.
    10. 10)
      • K.J. ASTROM , B. WITTENMARK . (1984) , Computer controlled systems theory and design.
    11. 11)
      • M.G. Safonov , B.S. Chen . Multivariable stability-margin optimisation with decoupling and output regulation. IEE Proc. D, Control Theory & Appl. , 6 , 276 - 282
    12. 12)
      • C.A. Desor , R.W. Liu , J. Murray , R. Saeks . Feedback system design: the fractional representation approach to analysis and synthesis. IEEE Trans. , 399 - 412
    13. 13)
      • C.A. Desor , M.J. Chen . Design of multivariable feedback system with stable plant. IEEE Trans. , 408 - 414
    14. 14)
      • C.A. Desor , M.J. Chen . Extention of design algorithm of “Design of multivariable feedback systems with stable plant” to the tracking problem. IEEE Trans. , 526 - 527
    15. 15)
      • J.G. Park , K.Y. Lee . An inverse optimal control problem and its application to the choice of performance index for economic stabilization policy. IEEE Trans. , 64 - 76
    16. 16)
      • R.E. Kalman . When is a linear control system optimal?. J. Basic Eng. , 51 - 60
    17. 17)
      • A. Jameson , E. Kreindler . Inverse problem of linear optimal control. SIAM J. Control. , 1 - 19
    18. 18)
      • R. Yokoyama , E. Kinnen . The inverse problem of the optimal regulator. IEEE Trans. , 499 - 504
    19. 19)
      • Chen, B.S.: `The inverse problem of LQG control via frequency dependent cost/noise matrices', 1982, Ph.D. Dissertation, University of Southern California.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1987.0061
Loading

Related content

content/journals/10.1049/ip-d.1987.0061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address