© The Institution of Electrical Engineers
A linear optimal quadratic regulator is developed, for optimally placing the closedloop poles of multivariable continuoustime systems within the common region of an open sector, and the lefthand side of a line parallel to the imaginary axis in the complex splane, without explicitly utilising the eigenvalues of the openloop systems. Also, a pseudocontinuoustime statespace method is developed, for finding the linear suboptimal quadratic regulator which suboptimally places the closedloop poles of multivariable discretetime systems within the common region of a circle, and the logarithmic spiral in the complex zplane. An illustrative example is presented to demonstrate the effectiveness of the proposed procedures.
References


1)

J.R. Ragazzini ,
G.F. Franklin
.
(1958)
, Sampleddata control systems.

2)

O.A. Solheim
.
Design of optimal control systems with prescribed eigenvalues.
Int. J. Control
,
143 
160

3)

M.H. Amin
.
Optimal pole shifting for continuous multivariable linear systems.
Int. J. Control
,
701 
707

4)

J.C. Juang ,
T.T. Lee
.
On optimal pole assignment in a specified region.
Int. J. Control
,
65 
79

5)

F. Heger ,
P.M. Frank ,
S.G. Tzafestas
.
(1984)
Linear quadratic regulators with prescribed eigenvalues for a family of linear systems, Multivariable control.

6)

N. Kawasaki ,
E. Shimemura
.
Determining quadratic weighting matrices to locate poles in a specified region.
Automatica
,
557 
560

7)

B.D.O. Anderson ,
J.B. Moore
.
(1971)
, Linear optimal control.

8)

L.S. Shieh ,
H.M. Dib ,
B.C. McInnis
.
Linear quadratic regulators with eigenvalue placement in a vertical strip.
IEEE Trans.
,
241 
243

9)

B.C. Kou
.
(1980)
, Digital control systems.

10)

K. ÅSTRÖM ,
B. WITTENMARK
.
(1984)
, Computer controlled systems.

11)

C.H. Houpis
.
Refined design method for sampleddata control systems: the pseudocontinuoustime control system design.
IEE Proc. D, Control Theory & Appl.
,
2 ,
69 
74

12)

H. Kwakernaak ,
R. Sivan
.
(1972)
, Linear optimal control systems.

13)

B.P. Molinari
.
The timeinvariant linearquadratic optimal control problem.
Automatica
,
347 
357

14)

M.G. Safonou ,
M. Athans
.
Gain and phase margin for multi loop LQG regulators.
IEEE Trans.
,
173 
178

15)

C. Moler ,
C. Vanloan
.
Nineteen dubious ways to compute the exponential of a matrix.
SIAM Rev.
,
801 
836

16)

N.K. Sinha ,
B. Kusta
.
(1983)
, Modeling and identification of dynamic systems.

17)

L.S. Shieh ,
H. Wang ,
R.E. Yates
.
Discretecontinuous model conversion.
Appl. Math. Modelling
,
449 
455

18)

L.S. Shieh ,
R.E. Yates ,
J.M. Navarro
.
Representation of continuoustime state equations by discretetime state equation.
IEEE Trans.
,
485 
492

19)

E.L. Harris
.
Using discrete models with continuous design packages.
Automatica
,
97 
99

20)

L.S. Shieh ,
J.S.H. Tsai ,
S.R. Lian
.
Determining continuoustime state equations from discretetime state equations via the principal qth root method.
IEEE Trans.
,
45 
457

21)

N.K. Sinha ,
S. Puthenpura
.
Choice of the sampling interval for the identification of continuoustime systems from samples of input/output data.
IEE Proc. D. Control Theory & Appl.
,
6 ,
263 
267

22)

R.J. Schwarz ,
B. Friedland
.
(1965)
, Linear systems.

23)

C.T. Chen
.
(1984)
, Linear system theory and design.

24)

W.A. Wolovich
.
(1974)
, Linear multivariable systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/ipd.1987.0056
Related content
content/journals/10.1049/ipd.1987.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6