http://iet.metastore.ingenta.com
1887

Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region

Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A linear optimal quadratic regulator is developed, for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, without explicitly utilising the eigenvalues of the open-loop systems. Also, a pseudo-continuous-time state-space method is developed, for finding the linear suboptimal quadratic regulator which suboptimally places the closed-loop poles of multivariable discrete-time systems within the common region of a circle, and the logarithmic spiral in the complex z-plane. An illustrative example is presented to demonstrate the effectiveness of the proposed procedures.

References

    1. 1)
      • J.R. Ragazzini , G.F. Franklin . (1958) , Sampled-data control systems.
    2. 2)
      • O.A. Solheim . Design of optimal control systems with prescribed eigenvalues. Int. J. Control , 143 - 160
    3. 3)
      • M.H. Amin . Optimal pole shifting for continuous multivariable linear systems. Int. J. Control , 701 - 707
    4. 4)
      • J.C. Juang , T.T. Lee . On optimal pole assignment in a specified region. Int. J. Control , 65 - 79
    5. 5)
      • F. Heger , P.M. Frank , S.G. Tzafestas . (1984) Linear quadratic regulators with prescribed eigenvalues for a family of linear systems, Multivariable control.
    6. 6)
      • N. Kawasaki , E. Shimemura . Determining quadratic weighting matrices to locate poles in a specified region. Automatica , 557 - 560
    7. 7)
      • B.D.O. Anderson , J.B. Moore . (1971) , Linear optimal control.
    8. 8)
      • L.S. Shieh , H.M. Dib , B.C. McInnis . Linear quadratic regulators with eigenvalue placement in a vertical strip. IEEE Trans. , 241 - 243
    9. 9)
      • B.C. Kou . (1980) , Digital control systems.
    10. 10)
      • K. ÅSTRÖM , B. WITTENMARK . (1984) , Computer controlled systems.
    11. 11)
      • C.H. Houpis . Refined design method for sampled-data control systems: the pseudo-continuous-time control system design. IEE Proc. D, Control Theory & Appl. , 2 , 69 - 74
    12. 12)
      • H. Kwakernaak , R. Sivan . (1972) , Linear optimal control systems.
    13. 13)
      • B.P. Molinari . The time-invariant linear-quadratic optimal control problem. Automatica , 347 - 357
    14. 14)
      • M.G. Safonou , M. Athans . Gain and phase margin for multi loop LQG regulators. IEEE Trans. , 173 - 178
    15. 15)
      • C. Moler , C. Vanloan . Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. , 801 - 836
    16. 16)
      • N.K. Sinha , B. Kusta . (1983) , Modeling and identification of dynamic systems.
    17. 17)
      • L.S. Shieh , H. Wang , R.E. Yates . Discrete-continuous model conversion. Appl. Math. Modelling , 449 - 455
    18. 18)
      • L.S. Shieh , R.E. Yates , J.M. Navarro . Representation of continuous-time state equations by discrete-time state equation. IEEE Trans. , 485 - 492
    19. 19)
      • E.L. Harris . Using discrete models with continuous design packages. Automatica , 97 - 99
    20. 20)
      • L.S. Shieh , J.S.H. Tsai , S.R. Lian . Determining continuous-time state equations from discrete-time state equations via the principal qth root method. IEEE Trans. , 45 - 457
    21. 21)
      • N.K. Sinha , S. Puthenpura . Choice of the sampling interval for the identification of continuous-time systems from samples of input/output data. IEE Proc. D. Control Theory & Appl. , 6 , 263 - 267
    22. 22)
      • R.J. Schwarz , B. Friedland . (1965) , Linear systems.
    23. 23)
      • C.T. Chen . (1984) , Linear system theory and design.
    24. 24)
      • W.A. Wolovich . (1974) , Linear multivariable systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1987.0056
Loading

Related content

content/journals/10.1049/ip-d.1987.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address