http://iet.metastore.ingenta.com
1887

Two-dimensional discrete model with varying coefficients

Two-dimensional discrete model with varying coefficients

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The aim of this paper is to present some new results concerning two-dimensional system theory. We consider a two-dimensional discrete linear model with varying coefficients. The model is a generalisation of the Roesser two-dimensional model with constant coefficients. Some useful properties of the new model are examined and an example of an application of the model to the analysis of dynamical systems is given.

References

    1. 1)
      • R.P. Roesser . A discrete state-space model for linear image processing. IEEE Trans. , 1 , 1 - 10
    2. 2)
      • R. Eising . (1979) , 2-D systems: an algebraic approach.
    3. 3)
      • R. Eising . Controllability and observability of 2-D systems. IEE Trans. , 1 , 132 - 133
    4. 4)
      • S.Y. Kung , B.C. Levy , M. Morf , T. Kailath . New results in 2-D systems theory; part II: 2-D state-space models — realization and the notions of controllability, observability and minimality. Proc. IEEE , 6 , 945 - 961
    5. 5)
      • P.N. Parsakevopoulos . Characteristic polynomial assignment and determination of the residual polynomial in 2-D systems. IEEE Trans. , 2 , 541 - 543
    6. 6)
      • S.G. Tzafestas , T.G. Pimenides . Transfer function computation and factorization of 3-dimensional systems in state-space. IEE Proc. D, Control Theory & Appl. , 5 , 231 - 242
    7. 7)
      • J. Klamka . Controllability of M-dimensional linear systems. Found. Control Eng. , 2 , 65 - 74
    8. 8)
      • T. Kaczorek . Deadbeat servo problem for 2-dimensional linear systems. Int. J. Control , 6 , 1349 - 1353
    9. 9)
      • T. Kaczorek . (1985) , Two-dimensional linear systems.
    10. 10)
      • T. Kaczorek , J. Kurek . Separability-assignment problem for q-dimensional linear discrete-time systems. Int. J. Control , 6 , 1375 - 1382
    11. 11)
      • E. Fornasini , G. Marchesini . State-space realization theory of two-dimensional filters. IEEE Trans. , 4 , 484 - 491
    12. 12)
      • E. Fornasini , G. Marchesini . Global properties and duality in 2-D systems. Syst. & Control Lett. , 1 , 30 - 38
    13. 13)
      • P. Stavroulakis , S.G. Tzafestas . State reconstruction in low-sensitive design of 3-dimensional systems. IEE Proc. D, Control Theory & Appl. , 6 , 333 - 340
    14. 14)
      • Agathoklis, P., Jury, E., Mansour, M.: `Asymptotic stability and the Lyapunov equation for two-dimensional discrete systems', Preprints of IFAC 9th World Congress, 1984, 8, p. 155–158.
    15. 15)
      • W. Marszałek . Two-dimensional state-space discrete models for hyperbolic partial differential equations. Appl. Math. Modelling , 1 , 11 - 14
    16. 16)
      • P. Stavroulakis , P.N. Paraskevopoulos . Low-sensitivity observer-compensator design for two-dimensional digital systems. IEE Proc. D, Control Theory & Appl. , 5 , 193 - 200
    17. 17)
      • Sagaspe, J.P.: `Contributions a l'identification non-lineaire par la representation fonctionelle et la transformee de Laguerre', 1976, Ph.D. Thesis, Bourdeaux-I University.
    18. 18)
      • W. Marszałek . Analysis of bilinear systems with Picard's method and block-pulse operational matrices. J. Franklin Inst.
    19. 19)
      • Marszałek, W.: `Application of piecewise-constant functions to the analysis of linear and nonlinear dynamical systems', 1984, Ph.D. Thesis, Technological University of Warsaw, (in Polish).
    20. 20)
      • W. Marszałek . On using orthogonal functions to the analysis of singular systems. IEE Proc. D, Control Theory & Appl. , 3 , 131 - 132
    21. 21)
      • J. Klamka . Minimum energy control for 2-D systems. Syst. Sci. , 1
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1986.0028
Loading

Related content

content/journals/10.1049/ip-d.1986.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address