http://iet.metastore.ingenta.com
1887

Statistical bounds on multivariable frequency response: an extension of the generalised Nyquist criterion

Statistical bounds on multivariable frequency response: an extension of the generalised Nyquist criterion

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Statistical bounds for model parameters and corresponding system frequency-response limits are established. The results are extended to multivariable systems to produce an element-by-element characterisation of system uncertainty. This uncertainty representation can be used to develop frequency-response bounds on the eigenfunctions of perturbed multivariable systems; thus producing system gain and phase information via a generalised Nyquist analysis. An application of the technique is presented using a two-input/two-output system.

References

    1. 1)
      • J.C. Doyle , G. Stein . Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. , 4 - 16
    2. 2)
      • R.W. Daniel , B. Kouvaritakis . A new robust stability criterion for linear and nonlinear multivariable feedback systems. Int. J. Control , 6 , 1349 - 1379
    3. 3)
      • J.C. Doyle . Analysis of feedback systems with structured uncertainties. IEE Proc. D, Control Theory & Appl. , 6 , 242 - 250
    4. 4)
      • M.G. Safonov . Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc. D, Control Theory & Appl. , 6 , 251 - 256
    5. 5)
      • Safonov, M.G.: `Exact calculation of the multivariable structured-singular-value stability margin', Proc. 23rd IEEE CDC, December 1984.
    6. 6)
      • B. Kouvaritakis , H. Latchman . Singular value and eigenvalue techniques in the analysis of systems with structured perturbations. Int. J. Control , 6 , 1381 - 1412
    7. 7)
      • B. Kouvaritakis , H. Latchman . Necessary and sufficient stability criterion for systems with structured uncertainties: the major principle direction alignment property. Int. J. Control , 3 , 575 - 598
    8. 8)
      • Kouvaritakis, B., Latchman, H.: `Block structured perturbations, necessary and sufficient stability conditions: the exact solution to the μ-problem', OUEL Report 1560/84, 1984.
    9. 9)
      • K. Janiszowski . Evaluation of the effects of identification errors on the dynamical properties of a process model. Int. J. Control , 2 , 445 - 459
    10. 10)
      • Edmunds, J.M.: `Confidence limits on identified frequency responses', Control System Center Report 607, 1984.
    11. 11)
      • F.C. Schweppe . (1973) , Uncertain dynamic systems.
    12. 12)
      • G.F. Franklin , J.D. Powell , M.L. Workman . (1990) , Digital control of dynamic systems.
    13. 13)
      • J.A. Cadzow , H.R. Martens . (1970) , Discrete-time and computer control systems.
    14. 14)
      • R. Deutsch . (1965) , Estimation theory.
    15. 15)
      • M.G. Kendall , A. Stuart . , The advanced theory of statistics.
    16. 16)
      • I.N. Gibra . (1973) , Probability and statistical inference for scientists and engineers.
    17. 17)
      • Wilson, E.B., Hilferty, N.M.: `The distribution of chisquare', Proc. National Academy of Sciences, 1931, 17, p. 684–688.
    18. 18)
      • D.B. Peizer , J.W. Pratt . A normal approximation for binomial, F, beta and other common, related tail probabilities. J. Am. Stat. Assoc. , 1416 - 1456
    19. 19)
      • N.L. Johnson , S. Kotz . (1967) , Tables of distributions of quadratic forms in central normal variables.
    20. 20)
      • N.L. Johnson , S. Kotz . (1967) , Tables of distributions of quadratic forms in central normal variables, II.
    21. 21)
      • Solomon, H.: `Distribution of quadratic forms — tables and applications', Technical Report 45, 1960, Applied Mathematics and Statistics Laboratories Stanford University.
    22. 22)
      • D.R. Jensen , H. Solomon . A Gaussian approximation to the distribution of a definite quadratic form. J. Am. Stat. Assoc. , 898 - 902
    23. 23)
      • T.A.S. Ibrahim , N. Munro . Design of sampled data multivariable control systems. Int. J. Control , 3 , 297 - 311
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1986.0013
Loading

Related content

content/journals/10.1049/ip-d.1986.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address