Robust stability of diagonally dominant systems

Access Full Text

Robust stability of diagonally dominant systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sufficient conditions for the stability of diagonally dominant systems subject to perturbation are developed using a theorem of Varah. The computation of perturbation bounds is simplified by use of L1 and L norms. These yield Nyquist type graphical interpretation. It is shown that if the perturbations are ‘diagonal’, then the norm bounds can be improved by the use of optimal similarity transformations, or equivalently optimal ‘generalised’ dominance measures, on the nominal system return difference matrix.

Inspec keywords: perturbation theory; stability

Other keywords: diagonally dominant systems; perturbation; optimal similarity transformations; dominance measures; robust stability

Subjects: Stability in control theory

References

    1. 1)
      • J.M. Varah . Singular value of a matrix. Linear Algebra & Appl. , 3 - 5
    2. 2)
      • E. Polak , D.Q. Mayne . On the solution of singular value inequalities over a continuum of frequencies. IEEE Trans. , 680 - 695
    3. 3)
      • O. Gross . (1959) , The bottleneck assignment problem: an algorithm.
    4. 4)
      • J.C. Doyle , G. Stein . Multivariable feedback design: concepts for a classical modern system. IEEE Trans. , 4 - 16
    5. 5)
      • J.B. Cruz , J.S. Freudenberg , D.P. Looze . A relationship between sensitivity and stability of multivariable feedback systems. IEEE Trans. , 366 - 374
    6. 6)
      • R.E. Burkard , W. Hahn , U. Zimmermann . An algebraic approach to assignment problems. Math. Program. , 318 - 327
    7. 7)
      • I. Postlethwaite , J.M. Edmunds , A.G.J. MacFarlane . Principal phase in the analysis of linear multivariable feedback systems. IEEE Trans. , 32 - 46
    8. 8)
      • H.H. ROSENBROCK . (1974) , Computer-aided control system design.
    9. 9)
      • Desoer, C.A., Wang, Y.T.: `On the generalised Nyquist stability criterion', Proceedings of 18th IEEE conference on decision and control, 1979, Fort Lauderdale, Florida, p. 580–586.
    10. 10)
      • A.I. Mees . Achieving diagonal dominance. Syst. & Control Lett. , 155 - 158
    11. 11)
      • M.G. Safonov , A.J. Laug , G.L. Hartmann . Feedback properties of multivariable systems: the role and use of return difference matrix. IEEE Trans. , 47 - 64
    12. 12)
      • Doyle, J.C.: `Robustness of multiloop linear feedback system', Proceedings of 17th IEEE conference on decision and control, 1979, San Diego, California, p. 12–18.
    13. 13)
      • M.G. Safonov , M. Athans . A multiloop generalisation of the circle criterion for stability margin analysis. IEEE Trans. , 415 - 422
    14. 14)
      • N. Munro . Design of controllers for open-loop unstable multivariable system usinginverse Nyquist array. Proc. IEE , 9 , 1377 - 1382
    15. 15)
      • M.G. Safonov . Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc. D, Control Theory & Appl. , 6 , 251 - 256
    16. 16)
      • D.Q. Mayne , E. Polak . Algorithms for the design of control systems subject to singular value inequalities. Math. Program. Stud. , 112 - 130
    17. 17)
      • J.S. Freudenberg , D.P. Looze , J.B. Cruz . Robustness analysis using singular value sensitivities. Int. J. Control , 95 - 116
    18. 18)
      • D.R. Fulkerson , I. Glicksberg , O. Gross . (1953) , A production line assignment problem.
    19. 19)
      • H.H. Rosenbrock . (1973) Multivariable circle theorems, Recent mathematical development in control theory.
    20. 20)
      • G.F. Bryant , L.F. Yeung . Methods and concepts of dominance optimisation. IEE Proc. D, Control Theory & Appl. , 2 , 72 - 82
    21. 21)
      • J.C. Doyle . Analysis of feedback systems with structured uncertainties. IEE Proc. D, Control Theory & Appl. , 6 , 242 - 250
    22. 22)
      • H.H. Rosenbrock . (1970) , State space and multivariable theory.
    23. 23)
      • A.J. Laub . An inequality and some computations related to the robust stability of linear dynamic systems. IEEE Trans. , 318 - 321
    24. 24)
      • E. Seneta . (1973) , Nonnegative matrices.
    25. 25)
      • O. Taussky , J. Todd . (1962) Some topics concerning bounds for eigenvalues of finite matrices, Survey in numerical analysis.
    26. 26)
      • D.H. Owens , A. Chotai . Robust controller design for linear dynamic systems using approximate models. IEE Proc. D, Control Theory & Appl. , 2 , 45 - 56
    27. 27)
      • D.W. Nuzman , N.R. Sandell . An inequality arising in robustness analysis of multivariable systems. IEEE Trans. , 492 - 493
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1984.0043
Loading

Related content

content/journals/10.1049/ip-d.1984.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading