Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Globally stable nonlinear flight control system

Globally stable nonlinear flight control system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The use of linear, constant feedback control in automatic flight control systems for aircraft inevitably gives rise to formidable design difficulties when attempting to satisfy the conflicting requirements for faithful tracking of a pilot's manoeuvre commands and maintaining the aircraft's trimmed attitude in the presence of atmospheric turbulence. Two nonlinear control policies, VICTOR and ZOC, are shown to provide superior performance and, when used simultaneously in the same flight control system, to assure global stability. Such stability obviates the need to provide adaptive control or gain-scheduling schemes to satisfy the flying quality requirements over the entire flight envelope of an aircraft. The potential performance of the nonlinear control is demonstrated by means of some results obtained from a digital simulation of a pitch-rate manoeuvre-demand system for a typical medium jet transport aircraft.

References

    1. 1)
      • G.A. Jones . On the step response of a class of 3rd-order linear systems. IEEE Trans.
    2. 2)
      • B.N. Naumov , Y.Z. Tsypkin . A frequency criterion for absolute process stability in non-linear automatic control systems. Autom. & Remote Control , 1139 - 1152
    3. 3)
      • D.T. McRuer . A feedback – theory analysis of airframe cross-coupling dynamics. J. Aeronaut. Sci. , 525 - 533
    4. 4)
      • D. McRuer , I. Ashkenas , D. Graham . (1973) , Aircraft dynamics and automatic control.
    5. 5)
      • J.G. Truxal . (1955) , Automatic feedback control synthesis.
    6. 6)
      • J.M.E. Valenca , C.J. Harris . Stability criteria for nonlinear multivariable systems. Proc. IEE , 6 , 623 - 627
    7. 7)
      • A. Klemin , P.A. Pepper , H.A. Wittner . (1938) , Longitudinal stability in relation to the use of an automatic pilot.
    8. 8)
      • F.R. Gill . (1980) , Ideas for future efficient flight control systems.
    9. 9)
      • C.J. Harris , R.K. Husband . Off-axis multivariable circle stability criterion. IEE Proc. D, Control Theory & Appl. , 5 , 215 - 218
    10. 10)
      • M. Athans . The role and use of the stochastic linear-quadratic-Gaussian problem in control system design. IEEE Trans. , 529 - 552
    11. 11)
      • J. Roskam . A simplified method to identify and cure roll coupling. J. Aeronaut. Sci. , 5
    12. 12)
      • Gill, F.R.: `Nonlinear pitch rate to elevator control laws for a combat circraft', TR79075, RAE technical report, 1979.
    13. 13)
      • A.T. Fuller . Conditions for aperiodicity in linear systems. Brit. J. Appl. Phys. , 195 - 198
    14. 14)
      • J.L. Bower , P.M. Schultheiss . (1958) , Introduction to the design of servomechanisms.
    15. 15)
      • Roskam, J.: `On some linear and non-linear stability and response characteristics of rigid airplanes', 1965, Ph.D. thesis, University of Washington, Seattle, USA.
    16. 16)
      • Gill, F.R.: `Design studies for non-linear control laws for automatic approach and landing. 1: Air-speed hold', TR80096, RAE technical report, 1980.
    17. 17)
      • Gill, F.R., McLean, D.: `Computer study of a self-adaptive longitudinal control system employing adjustments to the command input filter', TR79093, RAE technical report, 1979.
    18. 18)
      • W.H. Phillips . (1948) , The effect of steady rolling on longitudinal and directional stability.
    19. 19)
      • J.C. Willems , S.K. Mitter . Controllability, observability, pole allocation, and state reconstruction. IEEE Trans. , 582 - 595
    20. 20)
      • Fischel, E.: `Die automatische Flugzeugsteurerung', 1934, Ph.D. thesis, , TH Berlin-Charlottenburg .
    21. 21)
      • J. Glauert . (1920) , Summary of the present state of knowledge with regard to stability and control of aeroplanes.
    22. 22)
      • J.L. Willems . (1970) , Stability theory of dynamical systems.
    23. 23)
      • Thomas, H.H.B., Price, P.: `A contribution to the theory of aircraft response in rolling maneouvres including inertia cross-coupling effects', Aero 2634, RAE report, 1960.
    24. 24)
      • J.M. Horowitz , U. Shaked . Superiority of transfer functions over state-variables methods in linear time-invariant feedback system design. IEEE Trans. , 84 - 97
    25. 25)
      • I.M. Horowitz . (1963) , Synthesis of feedback systems.
    26. 26)
      • W.L. Cowley . (1928) , On the stability of controlled motion.
    27. 27)
      • H.K. Weiss . (1939) , Theory of automatic control of airplanes.
    28. 28)
      • W. Oppelt . (1941) , Comparison of automatic control systems.
    29. 29)
      • Gates, S.B.: `Notes on the aerodynamics of automatic direction control', BA 487, RAE report, 1924.
    30. 30)
      • Y.S. Cho , K.S. Narendra . An off-axis circle criterion for the stability of feedback systems with a monotonic non-linearity. IEEE Trans. , 413 - 416
    31. 31)
      • Schuler, M.J.: `Flight evaluation of an automatic control system for stabilising the large uncontrolled motions of an airplane in stalled flight', TB-1132-F-2, Cornell Aero. Lab. report, 1959.
    32. 32)
      • W.A. Johnston , D.H. Weir . Pilots' response to stability augmentation system failures and implications for design. J. Air. , 504 - 509
    33. 33)
      • F. Haus . (1932) , Automatic stability of airplanes.
    34. 34)
      • C.A. Desoer , M. Vidyasagar . (1975) , Feedback systems: Input/output properties.
    35. 35)
      • S. Neumark . (1943) , The disturbed longitudinal motion of an uncontrolled aeroplane and of an aeroplane with automatic control.
    36. 36)
      • F.W. Meredith , P.A. Cooke . Aeroplane stability and automatic control. J.R. Aeronaut. Soc. , 415 - 436
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1983.0018
Loading

Related content

content/journals/10.1049/ip-d.1983.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address