© The Institution of Electrical Engineers
The paper deals with nonlinear systems whose input/output relation may be represented by a functional power series in Banach space. It is shown how certain types of forced analytic differential equation (including the analytic statespace equation) can be solved explicity by such functional series. Special attention is given to the convergence of the solution which is related to the boundedinput/bounded output stability of the system.
References


1)

Wiener, N.: `Response of a nonlinear system to noise', Report V16, 129, 1942.

2)

Barrett, J.F.: `Bibliography on Volterra series, Hermite functional expansions, and related subjects', 77E71, Technical report, 1977.

3)

George, D.A.: `Continous nonlinear systems', 1959, D.Sc. thesis, MIT, (Technical report 355).

4)

A. Halme ,
J. Orava ,
H. Blomberg
.
Polynomial operators for nonlinear system analysis.
Int. J. Syst. Sci.
,
25 
47

5)

Halme, A.: `Polynomial operators for nonlinear system analysis', 1972, Dissertation, Helsinki University of Technology, Published in Acta Polytechnica Scan.1972, 24, pp. 763.

6)

W.A. Porter
.
An overview of polynomic system theory.
Proc. IEEE
,
18 
23

7)

P.E. Crouch
.
Polynomic systems theory: a review.
IEE Proc. D, Control Theory & Appl.
,
5 ,
220 
228

8)

Brilliant, M.B.: `Analytic nonlinear systems', 345, Technical report, 1958.

9)

Barrett, J.F.: `Problems arising from the analysis of randomly disturbed automatic control systems', 1958, Ph.D. thesis, Cambridge University, Department of Engineering.

10)

Y.H. Ku ,
A.A. Wolf
.
VolterraWiener functionals for the analysis of nonlinear systems.
J. Franklin Inst.
,
9 
26

11)

Parente, R.B.: `Functional analysis of systems characterised by nonlinear differential equations', 1965, DSc thesis, MIT, (technical report 444, 1966).

12)

J.F. Barrett
.
The use of Volterra series to find the region of stability of a nonlinear differential equation.
Int. J. Contr.
,
209 
216

13)

Barrett, J.F.: `Functional series solution of systems of differential equations', CUED/BControl/TR28, Technical report, 1972.

14)

M. Kielkiewicz
.
On stability of nonlinear systems.
Bull Acad. Pol.Sci.
,
18 
21

15)

E. Hille
.
(1957)
, Analytic function theory.

16)

Barrett, J.F.: `On systems defined by implicit analytic nonlinear functional equations', 77E77, Technical report, 1977.

17)

J.F. Barrett
.
Solution in functional series of the canonical differential equation of control theory in the analytic case.
C.R. Acad. Sci. Paris, Sér. A
,
471 
474

18)

M. Fréchet
.
Abstract polynomials.
J. Math. Pures Appl.
,
71 
92

19)

S. Mazur ,
W. Orlicz
.
Fundamental properties of polynomial operations.
Studia Math.
,
60 
68

20)

L.A. Lyusternik ,
V.J. Sobolev
.
(1951)
, Elements of functional analysis.

21)

A.D. Michal
.
(1958)
, Differential calculus in Banach spaces.

22)

J. Dieudonne
.
(1969)
, Foundations of modern analysis.

23)

J.F. Barrett
.
The series reversion method for solving forced nonlinear differential equations.
Math. Balkanika
,
43 
60

24)

Schaeffer, D.J., Leon, B.J.: `The steadystate analysis of nonlinear systems', TREE762, Technical report, 1976.

25)

E.R. Hedrick
.
(1950)
, Goursat's mathematical analysis.

26)

R.W. Brockett
.
Volterra series and geometric control theory.
Automatica
,
167 
176

27)

E.G. Gilbert
.
Functional expansion for the response of nonlinear differential systems.
IEEE Trans.
,
909 
921

28)

A.J. Krener ,
C. Lesiak
.
The existence and uniqueness of Volterra series for nonlinear systems.
IEEE Trans.
,
1090 
1095

29)

C. Bruni ,
G. di Pillo ,
G. Koch
.
On the mathematical models of bilinear systems.
Ric. Autom.
,
11 
26
http://iet.metastore.ingenta.com/content/journals/10.1049/ipd.1981.0041
Related content
content/journals/10.1049/ipd.1981.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6