http://iet.metastore.ingenta.com
1887

New approach to filtering for nonlinear systems

New approach to filtering for nonlinear systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper describes a recently developed reformulation of the optimal-filtering equations for a noisily observed diffusion process and discusses the computational implications. The computation involved is the solution of a parabolic partial differential equation whose coefficients are determined by the observed process. A Monte Carlo method of solution is proposed and given in detail as an example. It is argued that nonlinear filtering is now a practical proposition.

References

    1. 1)
      • R.S. Bucy , P.D. Joseph . (1968) , Filtering for stochastic processes with applications to guidance.
    2. 2)
      • Bucy, R.S., Hecht, C., Senne, K.D.: `An engineer's guide to building non-linear filters', report SRL-TR-72-0004, 1972.
    3. 3)
      • R.S. Bucy , K.D. Senne . Nonlinear filtering algorithms for vector processing machines. Comput. & Math. with Appl. , 317 - 338
    4. 4)
      • J.M.C. Clark , J.K. Skwirzynski . (1978) The design of robust approximations to the stochastic differential equations of nonlinear filtering, Communication systems and random process theory.
    5. 5)
      • M.H.A. Davis . (1977) , Linear estimation and stochastic control.
    6. 6)
      • M.H.A. Davis , M. Hazewinkel , J.C. Willems . (1981) Pathwise nonlinear filtering, Stochastic systems the mathematics of filtering and identification and applications.
    7. 7)
      • M.H.A. Davis . On a multiplicative functional transformation arising in nonlinear filtering theory. Z. Wahrscheinlichkeitstheorie ver Geb. , 125 - 139
    8. 8)
      • M.H.A. Davis , S.I. Marcus , M. Hazewinkel , J.C. Willems . (1981) An introduction to nonlinear filtering, Stochastic systems the mathematics of filtering and identification and applications.
    9. 9)
      • M.H.A. Davis , P.H. Wellings . (1980) Computational problems in nonlinear filtering, Analysis and Optimization of Systems.
    10. 10)
      • G.B. di Masi , W. Runggaldier . Continuous-time approximations to the nonlinear filtering problem. App. Math. & Optimiz.
    11. 11)
      • M. Fujisaki , G. Kallianpur , H. Kunita . Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. , 19 - 40
    12. 12)
      • A. Gelb . (1975) , Applied optimal estimation.
    13. 13)
      • J.M. Hammersley , D.C. Handscomb . (1964) , Monte Carlo methods.
    14. 14)
      • M. Hazewinkel , J.C. Willems . (1981) , Stochastic systems, the mathematics of filtering and identification and applications.
    15. 15)
      • G. Kallianpur . (1980) , Stochastic filtering theory.
    16. 16)
      • A.J. Krener . Kalman-Bucy and minimax filtering. IEEE Trans. , 291 - 292
    17. 17)
      • H. Kunita . Densities of measure-valued process governed by a stochastic partial differential equation. Syst. & Control Lett.
    18. 18)
      • H.J. Kushner . On the differential equations satisfied by the conditional probability densities of Markov processes. SIAM J. Control , 106 - 119
    19. 19)
      • H.J. Kushner . (1977) , Probability methods for approximations in stochastic control and for elliptic equations.
    20. 20)
      • H.J. Kushner . A robust discrete-state approximation to the optimal nonlinear filter for a difussion. Stochastics , 75 - 83
    21. 21)
      • R.S. Liptser , A.N. Shiryaev . (1977) , Statistics of random processes I.
    22. 22)
      • S.K. Mitter , M. Hazewinkel , J.C. Willems . (1981) Lectures on nonlinear filtering and stochastic mechanics, Stochastic systems the mathematics of filtering and identification and applications.
    23. 23)
      • E.J. McShane . (1974) , Stochastic calculus and stochastic models.
    24. 24)
      • E. Pardoux , M. Hazewinkel , J.C. Willems . (1981) Nonlinear filtering, prediction and smoothing, Stochastic systems the mathematics of filtering and identification and applications.
    25. 25)
      • E. Pardoux . Equations du filtrage non-linéaire, de la prediction et du lissage. Stochastics
    26. 26)
      • G. Strang , G.J. Fix . (1973) , An analysis of the finite element method.
    27. 27)
      • E. Wong . (1971) , Stochastic processes in information and dynamical systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1981.0037
Loading

Related content

content/journals/10.1049/ip-d.1981.0037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address