http://iet.metastore.ingenta.com
1887

Linear multipass processes: a two-dimensional interpretation

Linear multipass processes: a two-dimensional interpretation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A large class of discrete multipass processes can be viewed as two-dimensional systems of the form proposed by Roesser. It is shown that the criterion for stability along the pass is equivalent to Shanks condition for two-dimensional b.i.b.o. stability. The interplay of ideas between the two disciplines should make possible the emergence of a coherent feedback control and systems theory for multipass processes.

References

    1. 1)
      • J.B. Edwards . Stability problems in the control of multipass processes. Proc. IEE , 11 , 1425 - 1432
    2. 2)
      • J.B. Edwards . Wider application of multipass systems theory, Pt. 1: Multimachine and multicell systems. Proc. IEE , 5 , 447 - 452
    3. 3)
      • J.B. Edwards . Wider application of multipass systems theory, Pt. 2: Controlled distributed processes. Proc. IEE. , 5 , 453 - 459
    4. 4)
      • D.H. Owens . Stability of linear multipass processes. Proc. IEE. , 11 , 1079 - 1082
    5. 5)
      • D.H. Owens . Asymptotic stability of differential multipass processes. Electron. Lett. , 15 , 446 - 447
    6. 6)
      • R.P. Roesser . A discrete state-space model for linear image processing. IEEE Trans. , 1 - 10
    7. 7)
      • E.I. Jury . Stability of multidimensional scalar and matrix polynomials. Proc. IEEE , 1018 - 1047
    8. 8)
      • J.H. Justice , J.L. Shanks . Stability criterion for N-dimensional digital filters. IEEE Trans. , 284 - 286
    9. 9)
      • T.S. Huang . Stability of two-dimensional and recursive filters. IEEE Trans. , 158 - 163
    10. 10)
      • M.G. Strintzis . Tests of stability of multidimensional filters. Proc. IEE , 432 - 437
    11. 11)
      • R.A. de Carlo , R. Saeks , J. Murray . A Nyquist-like test for the stability of two-dimensional digital filters. Proc. IEEE , 978 - 979
    12. 12)
      • C.S. Koo , C.T. Chen . Fadeeva's algorithm for spatial dynamical equations. Proc. IEEE , 975 - 976
    13. 13)
      • F.R. Gantmacher . (1959) , The theory of matrices.
    14. 14)
      • A.F. Humes , E.I. Jury . Stability tests for two-dimensional linear multivariable digital filters. Int. J. Control , 225 - 234
    15. 15)
      • R.A. de Carlo , J. Murray , R. Saeks . Multivariable Nyquist theory. Int. J. Control. , 657 - 675
    16. 16)
      • Special issue on multidimensional systems. Proc. IEEE , 6
    17. 17)
      • S.Y. Kung , B.C. Levy , M. Morf , T. Kailath . New results in 2-D systems theory, Part II: 2-D state space models – realization and the notions of controllability, observability and minimality. Proc. IEEE. , 945 - 961
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1980.0032
Loading

Related content

content/journals/10.1049/ip-d.1980.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address