http://iet.metastore.ingenta.com
1887

Design of sliding mode control for nonlinear stochastic systems subject to actuator nonlinearity

Design of sliding mode control for nonlinear stochastic systems subject to actuator nonlinearity

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sliding mode control for a class of nonlinear Itô stochastic systems with sector nonlinearities and deadzones is concerned. The unmatched nonlinear uncertainties may appear in both the system state and stochastic perturbation. By utilising stochastic Lyapunov theory, sufficient conditions are derived via linear matrix inequalities such that the sliding motion is globally asymptotically stable in probability despite nonlinear uncertainties and actuator nonlinearities. It has been shown that the reachability of the specified switching surface can be ensured. An example illustrating the present method is provided.

References

    1. 1)
    2. 2)
      • Okabayashi, R., Furuta, K.: `Design of sliding mode control system with constrained inputs', Proc. IEEE Conf. on Decision and Control, 1996, Kobe, Japan, p. 3492–3497.
    3. 3)
      • K.C. Hsu . Sliding mode controlless for uncertain systems with input nonlinearities. J. Guid. Control Dyn. , 666 - 668
    4. 4)
      • J.-D. Boskovic , S.-M. Li , R.K. Mehra . Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid. Control Dyn. , 14 - 22
    5. 5)
    6. 6)
    7. 7)
      • S. Xu , T. Chen . Robust H∞ control for uncertain stochastic systems with state delay. IEEE Trans. Autom. Control , 2089 - 2094
    8. 8)
      • Z. Wang , H. Qiao , K.J. Burnham . On the stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters. IEEE Trans. Autom. Control , 640 - 646
    9. 9)
      • S. Xu , T. Chen . H∞ output feedback control for uncertain stochastic systems with time-varying delay. Automatica , 2091 - 2098
    10. 10)
      • Y. Niu , D.W.C. Ho , J. Lam . Robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Automatica , 873 - 880
    11. 11)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory.
    12. 12)
    13. 13)
    14. 14)
      • R.Z. Khas'minskii . (1981) Stochastic stability of differential equations.
    15. 15)
      • Uktin, V.I., Shi, J.X.: `Integral sliding mode in systems operating under uncertainty conditions', Proc. IEEE Conf. on Decision and Control, 1996, Kobe, Japan, p. 4591–4596.
    16. 16)
    17. 17)
    18. 18)
      • V.B. Kolmanovskii , A. Myshkis . (1992) Applied theory of functional differential equations.
    19. 19)
      • J.-J.E. Slotine . Sliding controller design for nonlinear systems. Int. J. Control , 421 - 434
    20. 20)
      • B. Bartolini . Chattering phenomena in discontinuous control systems. Int. J. Syst. Sci. , 2471 - 2481
    21. 21)
      • J.A. Burton , A.S.I. Zinober . Continuous approximation of variable structure control. Int. J. Syst. Sci. , 876 - 885
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20050194
Loading

Related content

content/journals/10.1049/ip-cta_20050194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address